Selected papers
Main content start
This is a selection of papers from the flagship DAWN projects and some others, formatted for easier navigation and with up-to-date links.
Publications
- Kang, Daniel, Nikos Arechiga, Sudeep Pillai, Peter Bailis, and Matei Zaharia. “Finding Label and Model Errors in Perception Data With Learned Observation Assertions”, SIGMOD ’22: Proceedings of the 2022 International Conference on Management of Data, 496–505. https://doi.org/10.1145/3514221.3517907.
- Coleman, Cody, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian Zhao, Jian Zhang, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. “Analysis of DAWNBench, a Time-to-Accuracy Machine Learning Performance Benchmark”, ACM SIGOPS Operating Systems Review, 53, no. 1 (July 25, 2019): 14–25. https://doi.org/10.1145/3352020.3352024.
- Bach, Stephen, Daniel Rodriguez, Yintao Liu, Chong Luo, Haidong Shao, Cassandra Xia, Souvik Sen, Alexander Ratner, Braden Hancock, Houman Alborzi, Rahul Kuchhal, Christopher Ré, and Rob Malkin. “Snorkel DryBell: A Case Study in Deploying Weak Supervision at Industrial Scale”, SIGMOD ’19: Proceedings of the 2019 International Conference on Management of Data, 362–375. https://doi.org/10.1145/3299869.3314036.
- Nardi, Luigi, David Koeplinger, and Kunle Olukotun. “Practical Design Space Exploration”, 2019 IEEE 27th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), 347–358. https://doi.org/10.1109/MASCOTS.2019.00045.
- Ratner, Alex, Braden Hancock, Jared Dunnmon, Roger Goldman, and Christopher Ré. “Snorkel MeTaL: Weak Supervision for Multi-Task Learning”, Proceedings of the Second Workshop on Data Management for End-To-End Machine Learning, 1–4. https://doi.org/10.1145/3209889.3209898.
- Koeplinger, David, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. “Spatial: A Language and Compiler for Application Accelerators”, PLDI 2018: Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, 296–311. https://doi.org/10.1145/3192366.3192379.
- Palkar, Shoumik, James Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul Palamuttam, Parimajan Negi, Anil Shanbhag, Malte Schwarzkopf, Holger Pirk, Saman Amarasinghe, Samuel Madden, and Matei Zaharia. “Evaluating End-to-End Optimization for Data Analytics Applications in Weld”, Proceedings of the VLDB Endowment, 11, no. 9 (May 1, 2018): 1002–1015. https://doi.org/10.14778/3213880.3213890.
- Ratner, Alexander, Stephen Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher Ré. “Snorkel: Rapid Training Data Creation With Weak Supervision”, Proceedings of the VLDB Endowment, 11, no. 3 (November 1, 2017): 269–282. https://doi.org/10.14778/3157794.3157797.
- Kang, Daniel, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. “NoScope: Optimizing Neural Network Queries over Video at Scale”, Proceedings of the VLDB Endowment, 10, no. 11 (August 1, 2017): 1586–1597. https://doi.org/10.14778/3137628.3137664.
- Bailis, Peter, Edward Gan, Kexin Rong, and Sahaana Suri. “Demonstration: MacroBase, A Fast Data Analysis Engine”, SIGMOD ’17: Proceedings of the 2017 ACM International Conference on Management of Data, 1699–1702. https://doi.org/10.1145/3035918.3056446.
- Bailis, Peter, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and Sahaana Suri. “MacroBase: Prioritizing Attention in Fast Data”, SIGMOD ’17: Proceedings of the 2017 ACM International Conference on Management of Data, 541–556. https://doi.org/10.1145/3035918.3035928.
- Ratner, Alexander, Stephen Bach, Henry Ehrenberg, and Christopher Ré. “Snorkel: Fast Training Set Generation for Information Extraction”, SIGMOD ’17: Proceedings of the 2017 ACM International Conference on Management of Data, 1683–1686. https://doi.org/10.1145/3035918.3056442.
- Ratner, Alexander, Stephen Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher Ré. “Snorkel: A System for Lightweight Extraction”, 8th Biennial Conference on Innovative Data Systems Research (CIDR ’17).
- Palkar, Shoumik, James Thomas, Anil Shanbhag, Deepak Narayanan, Holger Pirk, Malte Schwarzkopf, Saman Amarasinghe, and Matei Zaharia. “Weld: A Common Runtime for High Performance Data Analytics”, 8th Biennial Conference on Innovative Data Systems Research (CIDR ’17).
- Coleman, Cody, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi Nardi, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. “DAWNBench: An End-to-End Deep Learning Benchmark and Competition”, 31st Conference on Neural Information Processing Systems (NIPS 2017).
- Bailis, Peter, Edward Gan, Kexin Rong, and Sahaana Suri. “Prioritizing Attention in Fast Data: Principles and Promise”. 8th Biennial Conference on Innovative Data Systems Research (CIDR ’17), 2017.