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ABSTRACT
There are two types of high-performance graph processing
engines: low- and high-level engines. Low-level engines (Ga-
lois, PowerGraph, Snap) provide optimized data structures
and computation models but require users to write low-level
imperative code, hence ensuring that efficiency is the burden
of the user. In high-level engines, users write in query lan-
guages like datalog (SociaLite) or SQL (Grail). High-level
engines are easier to use but are orders of magnitude slower
than the low-level graph engines. We present EmptyHeaded,
a high-level engine that supports a rich datalog-like query
language and achieves performance comparable to that of
low-level engines. At the core of EmptyHeaded’s design is
a new class of join algorithms that satisfy strong theoretical
guarantees but have thus far not achieved performance com-
parable to that of specialized graph processing engines. To
achieve high performance, EmptyHeaded introduces a new
join engine architecture, including a novel query optimizer
and data layouts that leverage single-instruction multiple
data (SIMD) parallelism. With this architecture, Empty-
Headed outperforms high-level approaches by up to three
orders of magnitude on graph pattern queries, PageRank,
and Single-Source Shortest Paths (SSSP) and is an order
of magnitude faster than many low-level baselines. We val-
idate that EmptyHeaded competes with the best-of-breed
low-level engine (Galois), achieving comparable performance
on PageRank and at most 3x worse performance on SSSP.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management Sys-
tem Engines

Keywords
Worst-case optimal join; generalized hypertree decomposi-
tion; GHD; graph processing; single instruction multiple
data; SIMD

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915213

1. INTRODUCTION
The massive growth in the volume of graph data from

social and biological networks has created a need for effi-
cient graph processing engines. As a result, there has been
a flurry of activity around designing specialized graph an-
alytics engines [8, 21, 35, 43, 50]. These specialized engines
offer new programming models that are either (1) low-level,
requiring users to write code imperatively or (2) high-level,
incurring large performance gaps relative to the low-level ap-
proaches. In this work, we explore whether we can meet the
performance of low-level engines while supporting a high-
level relational (SQL-like) programming interface.

Low-level graph engines outperform traditional relational
data processing engines on common benchmarks due to (1)
asymptotically faster algorithms [17, 49] and (2) optimized
data layouts that provide large constant factor runtime im-
provements [35]. We describe each point in detail:

1. Low-level graph engines [8,21,35,43,50] provide itera-
tors and domain-specific primitives, with which users
can write asymptotically faster algorithms than what
traditional databases or high-level approaches can pro-
vide. However, it is the burden of the user to write the
query properly, which may require system-specific op-
timizations. Therefore, optimal algorithmic runtimes
can only be achieved through the user in these low-
level engines.

2. Low-level graph engines use optimized data layouts to
efficiently manage the sparse relationships common in
graph data. For example, optimized sparse matrix
layouts are often used to represent the edgelist rela-
tion [35]. High-level graph engines also use sparse lay-
outs like tail-nested tables [23] to cope with sparsity.

Extending the relational interface to match these guaran-
tees is challenging. While some have argued that traditional
engines can be modified in straightforward ways to accom-
modate graph workloads [20, 25], order of magnitude per-
formance gaps remain between this approach and low-level
engines [8, 23, 43]. Theoretically, traditional join engines
face a losing battle, as all pairwise join engines are prov-
ably suboptimal on many common graph queries [17]. For
example, low-level specialized engines execute the “triangle
listing” query, which is common in graph workloads [30,47],

in time O(N3/2) where N is the number of edges in the
graph. Any pairwise relational algebra plan takes at least
Ω(N2), which is asymptotically worse than the specialized

engines by a factor of
√
N . This asymptotic suboptimality
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sx := (πx R ∩ πx R) 
for x in sx: 
   sy := (πy R[x] ∩ πy R)  

for y in sy: 
  sz := (πz R[y] ∩ πz R[x])  
  for z in sz: 
    K3 ∪ (x, y, z) 
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Figure 1: The EmptyHeaded engine works in three phases: (1) the query compiler translates a high-level datalog-like query
into a logical query plan represented as a GHD (a hypertree with a single node here), replacing the traditional role of relational
algebra; (2) code is generated for the execution engine by translating the GHD into a series of set intersections and loops; and
(3) the execution engine performs automatic algorithmic and layout decisions based upon skew in the data.

is often inherited by high-level graph engines, as there has
not been a general way to compile these queries that obtains
the correct asymptotic bound [20,23]. Recently, new multi-
way join algorithms were discovered that obtain the correct
asymptotic bound for any graph pattern or join [17].

These new multiway join algorithms are by themselves not
enough to close the gap. LogicBlox [25] uses multiway join
algorithms and has demonstrated that they can support a
rich set of applications. However, LogicBlox’s current engine
can be orders of magnitude slower than the specialized en-
gines on graph benchmarks (see Section 5). This leaves open
the question of whether these multiway joins are destined to
be slower than specialized approaches.

We argue that an engine based on multiway join algo-
rithms can close this gap, but it requires a novel architecture
(Figure 1), which forms our main contribution. Our archi-
tecture includes a novel query compiler based on generalized
hypertree decompositions (GHDs) [2, 13] and an execution
engine designed to exploit the low-level layouts necessary
to increase single-instruction multiple data (SIMD) paral-
lelism. We argue that these techniques demonstrate that
multiway join engines can compete with low-level graph en-
gines, as our prototype is faster than all tested engines on
graph pattern queries (in some cases by orders of magnitude)
and competitive on other common graph benchmarks.

We design EmptyHeaded around tight theoretical guaran-
tees and data layouts optimized for SIMD parallelism.

GHDs as Query Plans. The classical approach to query
planning uses relational algebra, which facilitates optimiza-
tions such as early aggregation, pushing down selections,
and pushing down projections. In EmptyHeaded, we need a
similar framework that supports multiway (instead of pair-
wise) joins. To accomplish this, based off of an initial proto-
type developed in our group [51], we use generalized hyper-
tree decompositions (GHDs) [13] for logical query plans in
EmptyHeaded. GHDs allow one to apply the above classi-
cal optimizations to multiway joins. GHDs also have addi-
tional bookkeeping information that allow us to bound the
size of intermediate results (optimally in the worst case).
These bounds allow us to provide asymptotically stronger
runtime guarantees than previous worst-case optimal join
algorithms that do not use GHDs (including LogicBlox).1

As these bounds depend on the data and the query it is dif-

1LogicBlox has described a (non-public) prototype with an
optimizer similar but distinct from GHDs. With these mod-
ifications, LogicBlox’s relative performance improves simi-
larly to our own. It, however, remains at least an order of
magnitude slower than EmptyHeaded.

ficult to expect users to write these algorithms in a low-level
framework. Our contribution is the design of a novel query
optimizer and code generator based on GHDs that is able
to achieve the above results via a high-level query language.

Exploiting SIMD: The Battle With Skew. Optimizing re-
lational databases for the SIMD hardware trend has be-
come an increasingly hot research topic [37, 44, 55], as the
available SIMD parallelism has been doubling consistently
in each processor generation.2 Inspired by this, we exploit
the link between SIMD parallelism and worst-case optimal
joins for the first time in EmptyHeaded. Our initial proto-
type revealed that during query execution, unoptimized set
intersections often account for 95% of the overall runtime in
the generic worst-case optimal join algorithm. Thus, it is
critically important to optimize set intersections and the as-
sociated data layout to be well-suited for SIMD parallelism.
This is a challenging task as graph data is highly skewed,
causing the runtime characteristics of set intersections to be
highly varied. We explore several sophisticated (and not so
sophisticated) layouts and algorithms to opportunistically
increase the amount of available SIMD parallelism in the
set intersection operation. Our contribution here is an au-
tomated optimizer that, all told, increases performance by
up to three orders of magnitude by selecting amongst mul-
tiple data layouts and set intersection algorithms that use
skew to increase the amount of available SIMD parallelism.

We choose to evaluate EmptyHeaded on graph pattern
matching queries since pattern queries are naturally (and
classically) expressed as join queries. We also evaluate Emp-
tyHeaded on other common graph workloads including PageR-
ank and Single-Source Shortest Paths (SSSP). We show that
EmptyHeaded consistently outperforms the standard base-
lines [20] by 2-4x on PageRank and is at most 3x slower than
the highly tuned implementation of Galois [8] on SSSP. How-
ever, in our high-level language these queries are expressed
in 1-2 lines, while they are over 150 lines of code in Galois.
For reference, a hand-coded C implementation with similar
performance to Galois is 1000 lines.

Contribution Summary. This paper introduces the Emp-
tyHeaded engine and demonstrates that a novel architec-
ture can enable multi-way join engines to compete with
specialized low-level graph processing engines. We demon-
strate that EmptyHeaded outperforms specialized engines

2The Intel Ivy Bridge architecture, which we use in this
paper, has a SIMD register width of 256 bits. The next gen-
eration, the Intel Skylake architecture, has 512-bit registers
and a larger number of such registers.



on graph pattern queries while remaining competitive on
other workloads. To validate our claims we provide compar-
isons on standard graph benchmark queries that the special-
ized engines are designed to process efficiently.

A summary of our contributions and an outline is as fol-
lows:

• We describe the first worst-case optimal join process-
ing engine to use GHDs for logical query plans. We
describe how GHDs enable us to provide a tighter the-
oretical guarantee than previous worst-case optimal
join engines (Section 3). Next, we validate that the
optimizations GHDs enable provide more than a three
orders of magnitude performance advantage over pre-
vious worst-case optimal query plans (Section 5).

• We describe the architecture of the first worst-case op-
timal execution engine that optimizes for skew at sev-
eral levels of granularity within the data. We present a
series of automatic optimizers to select intersection al-
gorithms and set layouts based on data characteristics
at runtime (Section 4). We demonstrate that our au-
tomatic optimizers can result in up to a three orders
of magnitude performance improvement on common
graph pattern queries (Section 5).

• We validate that our general purpose engine can com-
pete with specialized engines on standard benchmarks
in the graph domain (Section 5). We demonstrate that
on cyclic graph pattern queries our approach outper-
forms graph engines by 2-60x and LogicBlox by three
orders of magnitude. We demonstrate on PageRank
and Single-Source Shortest Paths that our approach
remains competitive, at most 3x off the highly tuned
Galois engine (Section 5).

2. PRELIMINARIES
We briefly review the worst-case optimal join algorithm,

trie data structure, and query language at the core of the
EmptyHeaded design. The worst-case optimal join algo-
rithm, trie data structure, and query language presented
here serve as building blocks for the remainder of the paper.

2.1 Worst-Case Optimal Join Algorithms
We briefly review worst-case optimal join algorithms, which

are used in EmptyHeaded. We present these results infor-
mally and refer the reader to Ngo et al. [18] for a complete
survey. The main idea is that one can place (tight) bounds
on the maximum possible number of tuples returned by a
query and then develop algorithms whose runtime guaran-
tees match these worst-case bounds. For the moment, we
consider only join queries (no projection or aggregation),
returning to these richer queries in Section 3.

A hypergraph is a pairH = (V,E), consisting of a nonempty
set V of vertices, and a set E of subsets of V , the hyperedges
of H. Natural join queries and graph pattern queries can be
expressed as hypergraphs [13]. In particular, there is a direct
correspondence between a query and its hypergraph: there
is a vertex for each attribute of the query and a hyperedge
for each relation. We will go freely back and forth between
the query and the hypergraph that represents it.

A recent result of Atserias, Grohe, and Marx [3] (AGM)
showed how to tightly bound the worst-case size of a join
query using a notion called a fractional cover. Fix a hy-
pergraph H = (V,E). Let x ∈ R|E| be a vector indexed

Algorithm 1 Generic Worst-Case Optimal Join Algorithm

1 // Input : Hypergraph H = (V,E) , and a t up l e t .
2 Generic−Join (V ,E ,t ) :
3 i f |V | = 1 then return ∩e∈ERe[t] .
4 Let I = {v1} // the f i r s t a t t r i b u t e .
5 Q ← ∅ // the return va lue
6 // I n t e r s e c t a l l r e l a t i o n s t ha t contain v1
7 // Only those t u p l e s t ha t agree with t .
8 for every tv ∈ ∩e∈E:e3v1πI(Re[t]) do
9 Qt ← Generic−Join (V − I , E , t :: tv )

10 Q ← Q ∪ {tv} ×Qt

11 return Q

by edges, i.e., with one component for each edge, such that
x ≥ 0; x is a feasible cover (or simply feasible) for H if

for each v ∈ V we have
∑

e∈E:e3v

xe ≥ 1

A feasible cover x is also called a fractional hypergraph cover
in the literature. AGM showed that if x is feasible then
it forms an upper bound of the query result size |out| as
follows:

|out| ≤
∏
e∈E

|Re|xe (1)

For a query Q, we denote AGM(Q) as the smallest such
right-hand side.3

Example 2.1. For simplicity, let |Re| = N for e ∈ E.
Consider the triangle query, R(x, y) ./ S(y, z) ./ T (x, z),
a feasible cover is xR = xS = 1 and xT = 0. Via Equa-
tion 1, we know that |out| ≤ N2. That is, with N tuples
in each relation we cannot produce a set of output tuples
that contains more than N2. However, a tighter bound can
be obtained using a different fractional cover x = ( 1

2
, 1
2
, 1
2
).

Equation 1 yields the upper bound N3/2. Remarkably, this
bound is tight if one considers the complete graph on

√
N

vertexes. For this graph, this query produces Ω(N3/2) tu-
ples, which shows that the optimal solution can be tight up
to constant factors.

The first algorithm to have a running time matching these
worst-case size bounds is the NPRR algorithm [17]. An im-
portant property for the set intersections in the NPRR algo-
rithm is what we call the min property: the running time of
the intersection algorithm is upper bounded by the length
of the smaller of the two input sets. When the min property
holds, a worst-case optimal running time for any join query
is guaranteed. In fact, for any join query, its execution time
can be upper bounded by AGM(Q). A simplified high-level
description of the algorithm is presented in Algorithm 1. It
was also shown that any pairwise join plan must be slower
by asymptotic factors. However, we show in Section 3.1 that
these optimality guarantees can be improved for non-worst-
case data or more complex queries.

2.2 Input Data
EmptyHeaded stores all relations (input and output) in

tries, which are multi-level data structures common in col-
umn stores and graph engines [28,35].

3One can find the best bound, AGM(Q), in polynomial time:
take the log of Eq. 1 and solve the linear program.



Name Query Syntax

Triangle Triangle(x,y,z) :- R(x,y),S(y,z),T(x,z).

4-Clique 4Clique(x,y,z,w) :- R(x,y),S(y,z),T(x,z),U(x,w),V(y,w),Q(z,w).

Lollipop Lollipop(x,y,z,w) :- R(x,y),S(y,z),T(x,z),U(x,w).

Barbell Barbell(x,y,z,x’,y’,z’) :- R(x,y),S(y,z),T(x,z),U(x,x’),R’(x’,y’),S’(y’,z’),T’(x’,z’).

Count Triangle CountTriangle (;w:long) :- R(x,y),S(x,z),T(x,z); w=<<COUNT(*)>>.

PageRank
N(;w:int) :- Edge(x,y); w=<<COUNT(x)>>.
PageRank(x;y:float) :- Edge(x,z); y= 1/N.
PageRank(x;y:float )*[i=5] :- Edge(x,z),PageRank(z),InvDeg(z); y=0.15+0.85* < < SUM(z)>>.

SSSP SSSP(x;y:int) :- Edge("start",x); y=1.
SSSP(x;y:int)* :- Edge(w,x),SSSP(w); y=<<MIN(w)>>+1.

Table 1: Example Queries in EmptyHeaded

Trie Annotations. The sets of values in the trie can op-
tionally be associated with data values (1-1 mapping) that
are used in aggregations. We call these associated values
annotations [36]. For example, a two-level trie annotated
with a float value represents a sparse matrix or graph with
edge properties. We show in Section 5 that the trie data
structure works well on a wide variety of graph workloads.

Dictionary Encoding. The tries in EmptyHeaded currently
support sets containing 32-bit values. As is standard [21,37],
we use the popular database technique of dictionary encod-
ing to build a EmptyHeaded trie from input tables of arbi-
trary types. Dictionary encoding maps original data values
to keys of another type—in our case 32-bit unsigned integers.
The order of dictionary ID assignment affects the density of
the sets in the trie, and as others have shown this can have a
dramatic impact on overall performance on certain queries.
Like others, we find that node ordering is powerful when cou-
pled with pruning half the edges in an undirected graph [49].
This creates up to 3x performance difference on symmetric
pattern queries like the triangle query. Unfortunately this
optimization is brittle, as the necessary symmetrical prop-
erties break with even a simple selection. On more general
queries we find that node ordering typically has less than a
10% overall performance impact. We explore the effect of
various node orderings in Appendix A.1.1.

Column (Index) Order. After dictionary encoding, our 32-
bit value relations are next grouped into sets of distinct val-
ues based on their parent attribute (or column). We are
free to select which level corresponds to each attribute (or
column) of an input relation. As with most graph engines,
we simply store both orders for each edge relation. In gen-
eral, we choose the order of the attributes for the trie based
on a global attribute order, which is analogous to select-
ing a single index over the relation. The trie construction
process produces tries where the sets of data values can be
extremely dense, extremely sparse, or anywhere in between.
Optimizing the layout of these sets based upon their data
characteristics is the focus of Section 4. The complete trans-
formation process from a standard relational table to the trie
representation in EmptyHeaded is detailed in Figure 2.

2.3 Query Language
Our query language is inspired by datalog and supports

conjunctive queries with aggregations and simple recursion
(similar to LogicBlox and SociaLite). In this section, we de-
scribe the core syntax for our queries, which is sufficient to

Manages

managerID employeeID employeeRating

10 543 1.7

20 10 3.8

10 300 9.5

40 20 6.4

ID Map

ID Key

10 0

20 1

40 2

300 3

543 4

0

1

2

3

4

0

1

9.5

1.7

3.8

6.4

Dictionary Encoding Trie RepresentationOriginal Relation

Figure 2: EmptyHeaded transformations from a ta-
ble to trie representation using attribute order (man-
agerID,employerID) and employerID attribute annotated
with employeeRating.

express the standard benchmarks we run in Section 5. Ta-
ble 1 shows the example queries used in this paper. Above
the first horizontal line are conjunctive queries that express
joins, projections, and selections in the standard way [52].
Our language has two non-standard extensions: aggrega-
tions and a limited form of recursion. We overview both
extensions next and provide an example in Appendix A.2.

Aggregation. Following Green et al. [36], tuples can be an-
notated in EmptyHeaded, and these annotations support
aggregations from any semiring (a generalization of natural
numbers equipped with a notion of addition and multiplica-
tion). This enables EmptyHeaded to support classic aggre-
gations such as SUM, MIN, or COUNT, but also more sophisti-
cated operations such as matrix multiplication. To specify
the annotation, one uses a semicolon in the head of the rule,
e.g., q(x,y;z:int) specifies that each x,y pair will be asso-
ciated with an integer value with alias z similar to a GROUP

BY in SQL. In addition, the user expresses the aggregation
operation in the body of the rule. The user can specify an
initialization value as any expression over the tuples’ val-
ues and constants, while common aggregates have default
values. Directly below the first line in Table 1, a typical
triangle counting query is shown.

Recursion. EmptyHeaded supports a simplified form of re-
cursion similar to Kleene-star or transitive closure. Given
an intensional or extensional relation R, one can write a
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(c) EmptyHeaded GHD

Figure 3: We show the Barbell query hypergraph and two possible GHDs for the query. A node v in a GHD captures which
relations should be joined with λ(v) and which attributes should be retained with projection with χ(v).

Kleene-star rule like:

R*(x̄) :- q(x̄, ȳ)

The rule R∗ iteratively applies q to the current instantia-
tion of R to generate new tuples which are added to R. It
performs this iteration until (a) the relation doesn’t change
(a fixpoint semantic) or (b) a user-defined convergence crite-
rion is satisfied (e.g. a number of iterations, i=5). Examples
that capture familiar PageRank and Single-Source Shortest
Paths are below the second horizontal line in table 1.

3. QUERY COMPILER
We now present an overview of the query compiler in Emp-

tyHeaded, which is the first worst-case optimal query com-
piler to enable early aggregation through its use of GHDs for
logical query plans. We first discuss GHDs and their theoret-
ical advantages. Next, we describe how we develop a simple
optimizer to select a GHD (and therefore a query plan). Fi-
nally, we show how EmptyHeaded translates a GHD into a
series of loops, aggregations, and set intersections using the
generic worst-case optimal join algorithm [17]. Our contri-
bution here is the design of a novel query compiler that pro-
vides tighter runtime guarantees than existing approaches.

3.1 Query Plans using GHDs
As in a classical database, EmptyHeaded needs an ana-

log of relational algebra to represent logical query plans.
In contrast to traditional relational algebra, EmptyHeaded
has multiway join operators. A natural approach would be
simply to extend relational algebra with a multiway join al-
gorithm. Instead, we advocate replacing relational algebra
with GHDs, which allow us to make non-trivial estimates on
the cardinality of intermediate results. This enables opti-
mizations, like early aggregation in EmptyHeaded, that can
be asymptotically faster than existing worst-case optimal
engines. We first describe the motivation for using GHDs
while formally describing their advantages next.

3.1.1 Motivation
A GHD is a tree similar to the abstract syntax tree of

a relational algebra expression: nodes represent a join and
projection operation, and edges indicate data dependencies.
A node v in a GHD captures which attributes should be
retained (projection with χ(v)) and which relations should
be joined (with λ(v)). We consider all possible query plans
(and therefore all valid GHDs), selecting the one where the
sum of each node’s runtime is the lowest. Given a query,
there are many valid GHDs that capture the query. Finding
the lowest-cost GHD is one goal of our optimizer.

Before giving the formal definition, we illustrate GHDs
and their advantages by example:

Example 3.1. Figure 3a shows a hypergraph of the Bar-
bell query introduced in Table 1. This query finds all pairs of
triangles connected by a path of length one. Let out be the
size of the output data. From our definition in Section 2.1,
one can check that the Barbell query has a feasible cover of
( 1
2
, 1
2
, 1
2
, 0, 1

2
, 1
2
, 1
2
) with cost 6 × 1

2
= 3 and so runs in time

O(N3). In fact, this bound is worst-case optimal because
there are instances that return Ω(N3) tuples. However, the
size of the output out could be much smaller.

There are multiple GHDs for the Barbell query. The sim-
plest GHD for this query (and in fact for all queries) is a
GHD with a single node containing all relations; the single
node GHD for the Barbell query is shown in Figure 3b. One
can view all of LogicBlox’s current query plans as a single
node GHD. The single node GHD always represents a query
plan which uses only the generic worst-case optimal join al-
gorithm and no GHD optimizations. For the Barbell query,
out is N3 in the worst-case for the single node GHD.

Consider the alternative GHD shown in Figure 3c. This
GHD corresponds to the following alternate strategy to the
above plan: first list each triangle independently using the
generic worst-case optimal algorithm, say on the vertices
(x, y, z) and then (x′, y′, z′). There are at most O(N3/2)
triangles in each of these sets and so it takes only this time.
Now, for each (x, x′) ∈ U we output all the triangles that
contain x or x′ in the appropriate position. This approach
is able to run in time O(N3/2 + out) and essentially per-
forms early aggregation if possible. This approach can be
substantially faster when out is smaller than N3. For ex-
ample, in an aggregation query out is just a single scalar,
and so the difference in runtime between the two GHDs can
be quadratic in the size of the database. We describe how
we execute this query plan in Section 3.3. This type of opti-
mization is currently not available in the LogicBlox engine.

3.1.2 Formal Description
We describe GHDs and their advantages formally next.

Definition 1. Let H be a hypergraph. A generalized
hypertree decomposition (GHD) of H is a triple D =
(T, χ, λ), where:

• T (V (T ), E(T )) is a tree;

• χ : V (T ) → 2V (H) is a function associating a set of
vertices χ(v) ⊆ V (H) to each node v of T ;

• λ : V (T ) → 2E(H) is a function associating a set of
hyperedges to each vertex v of T ;



such that the following properties hold:

1. For each e ∈ E(H), there is a node v ∈ V (T ) such that
e ⊆ χ(v) and e ∈ λ(v).

2. For each t ∈ V (H), the set {v ∈ V (T )|t ∈ χ(v)} is
connected in T .

3. For every v ∈ V (T ), χ(v) ⊆ ∪λ(v).

A GHD can be thought of as a labeled (hyper)tree, as
illustrated in Figure 3. Each node of the tree v is labeled;
χ(v) describes which attributes are “returned” by the node
v–this exactly captures projection in traditional relational
algebra. The label λ(v) captures the set of relations that
are present in a (multiway) join at this particular node. The
first property says that every edge is mapped to some node,
and the second property is the famous “running intersection
property” [31] that says any attribute must form a connected
subtree. The third property is redundant for us, as any GHD
violating this condition is not considered (has infinite width
which we describe next).

Using GHDs, we can define a non-trivial cardinality es-
timate based on the sizes of the relations. For a node v,
define Qv as the query formed by joining the relations in
λ(v). The (fractional) width of a GHD D is AGM(Qv),
which is an upper bound on the number of tuples returned
by Qv. The fractional hypertree width (fhw) of a hyper-
graph H is the minimum width of all GHDs of H. Given
a GHD with width w, there is a simple algorithm to run in
time O(Nw + out). First, run any worst-case optimal al-
gorithm on Qv for each node v of the GHD; each join takes
time O(Nw) and produces at most O(Nw) tuples. Then, one
is left with an acyclic query over the output of Qv, namely
the tree itself. We then perform Yannakakis’ classical algo-
rithm [54], which for acyclic queries enables us to compute
the output in linear time in the input size (O(Nw)) plus the
output size (out).

3.2 Choosing Logical Query Plans
We describe how EmptyHeaded chooses GHDs, explain

how we leverage previous work to enable aggregations over
GHDs, and describe how GHDs are used to select a global
attribute ordering in EmptyHeaded. In Appendix B.1, we
provide detail on how classic database optimizations, such
as pushing down selections, can be captured using GHDs.

GHD Optimizer. The EmptyHeaded query compiler se-
lects an optimal GHD to ensure tighter theoretical run time
guarantees. It is key that the EmptyHeaded optimizer se-
lects a GHD with the smallest width w to ensure an optimal
GHD. Similar to how a traditional database pushes down
projections to minimize the output size, EmptyHeaded min-
imizes the output size by finding the GHD with the smallest
width. In contrast to pushing down projections, finding the
minimum width GHD is NP-hard in the number of relations
and attributes. As the number of relations and attributes is
typically small (three for triangle counting), we simply brute
force search GHDs of all possible widths.

Aggregations over GHDs. Previous work has investigated
aggregations over hypertree decompositions [13,48]. Empty-
Headed adopts this previous work in a straightforward way.

Operation Description

Trie (R)
R[t]

Returns the set
matching tuple t ∈ R.

R← R ∪ t× xs Appends elements in set xs
to tuple t ∈ R.

Set (xs)
for x in xs

Iterates through the
elements x of a set xs.

xs ∩ ys Returns the intersection
of sets xs and ys.

Table 2: Execution Engine Operations

To do this, we add a single attribute with “semiring annota-
tions” following Green et al. [36]. EmptyHeaded simply ma-
nipulates this value as it is projected away. This general no-
tion of aggregations over annotations enables EmptyHeaded
to support traditional notions of queries with aggregations
as well as a wide range of workloads outside traditional data
processing, like message passing in graphical models.

Global Attribute Ordering. Once a GHD is selected, Emp-
tyHeaded selects a global attribute ordering. The global
attribute ordering determines the order in which Empty-
Headed code generates the generic worst-case optimal al-
gorithm (Algorithm 1) and the index structure of our tries
(Section 2.2). Therefore, selecting a global attribute order-
ing is analogous to selecting a join and index order in a
traditional pairwise relational engine. The attribute order
depends on the query. For the purposes of this paper, we
assume both trie orderings are present, and we are there-
fore free to select any attribute order. For graphs (two-
attributes), most in-memory graph engines maintain both
the matrix and its transpose in the compressed sparse row
format [8, 35]. We are the first to consider selecting an at-
tribute ordering based on a GHD and as a result we ex-
plore simple heuristics based on structural properties of the
GHD. To assign an attribute order for all queries in this
paper, EmptyHeaded simply performs a pre-order traversal
over the GHD, adding the attributes from each visited GHD
node into a queue.

3.3 Code Generation
EmptyHeaded’s code generator converts the selected GHD

for each query into optimized C++ code that uses the oper-
ators in Table 2. We choose to implement code generation in
EmptyHeaded as it is has been shown to be an efficient tech-
nique to translate high-level query plans into code optimized
for modern hardware [46].

3.3.1 Code Generation API
We first describe the storage-engine operations which serve

as the basic high-level API for our generated code. Our trie
data structure offers a standard, simple API for traversals
and set intersections that is sufficient to express the worst-
case optimal join algorithm detailed in Algorithm 1. The
key operation over the trie is to return a set of values that
match a specified tuple predicate (see Table 2). This op-
eration is typically performed while traversing the trie, so
EmptyHeaded provides an optimized iterator interface. The
set of values retrieved from the trie can be intersected with
other sets or iterated over using the operations in Table 2.



3.3.2 GHD Translation
The goal of code generation is to translate a GHD to the

operations in Table 2. Each GHD node v ∈ V (T ) is associ-
ated with a trie described by the attribute ordering in χ(v).
Unlike previous worst-case optimal join engines, there are
two phases to our algorithm: (1) within nodes of V (T ) and
(2) between nodes V (T ).

Within a Node. For each v ∈ V (T ), we run the generic
worst-case optimal algorithm shown in Algorithm 1. Sup-
pose Qv is the triangle query.

Example 3.2. Consider the triangle query. The hyper-
graph is V = {X,Y, Z} and E = {R,S, T}. In the first call,
the loop body generates a loop with body Generic-Join(
{Y,Z}, E, tX). In turn, with two more calls this generates:

for tX ∈ πXR ∩ πXT do
for tY ∈ πYR[tX ] ∩ πY S do

Q← Q ∪ (tx, ty)× (πZS[tY ] ∩ πZT [tX ]).

Across Nodes. Recall Yannakakis’ seminal algorithm [54]:
we first perform a “bottom-up” pass, which is a reverse level-
order traversal of T . For each v ∈ V (T ), the algorithm com-
putes Qv and passes its results to the parent node. Between
nodes (v0, v1) we pass the relations projected onto the shared
attributes χ(v0) ∩ χ(v1). Then, the result is constructed by
walking the tree “top-down” and collecting each result.

Recursion. EmptyHeaded supports both naive and semi-
naive evaluation to handle recursion. For naive recursion,
EmptyHeaded’s optimizer produces a (potentially infinite)
linear chain GHD with the output of one GHD node serving
as the input to its parent GHD node. We run naive recur-
sion for PageRank in Table 1. This boils to down to a simple
unrolling of the join algorithm. Naive recursion is not an ac-
ceptable solution in applications such as SSSP where work is
continually being eliminated. To detect when EmptyHeaded
should run seminaive recursion, we check if the aggregation
is monotonically increasing or decreasing with a MIN or MAX

operator. We use seminaive recursion for SSSP.

Example 3.3. For the Barbell query (see Figure 3c), we
first run Algorithm 1 on nodes v1 and v2; then we project
their results on x and x′ and pass them to node v0. This is
part of the “bottom-up” pass. We then execute Algorithm 1
on node v0 which now contains the results (triangles) of its
children. Algorithm 1 executes here by simply checking for
pairs of (x, x′) from its children that are in U . To perform
the “top-down” pass, for each matching pair, we append (y, z)
from v1 and (y′, z′) from v2.

4. EXECUTION ENGINE OPTIMIZER
The EmptyHeaded execution engine runs code generated

from the query compiler. The goal of the EmptyHeaded
execution engine is to fully utilize SIMD parallelism, but
extracting SIMD parallelism is challenging as graph data is
often skewed in several distinct ways. The density of data
values is almost never constant: some parts of the relation
are dense while others are sparse. We call this density skew.4

4We measure density skew using the Pearson’s first coeffi-
cient of skew defined as 3σ−1(mean−mode) where σ is the
standard deviation.

n o1 . . . on b1 . . . bn
Figure 4: Example of the bitset layout that contains n
blocks and a sequence of offsets (o1-on) and blocks (b1-bn).
The offsets store the start offset for values in the bitvector.

A novel aspect of EmptyHeaded is that it automatically
copes with density skew through an optimizer that selects
among different data layouts. We implemented and tested
five different set layouts previously proposed in the litera-
ture [6,7,15,39]. We found that the simple uint and bitset

layouts yield the highest performance in our experiments
(see Appendix C.2.2). Thus, we focus on selecting between
(1) a 32-bit unsigned integer (uint) layout for sparse data
and (2) a bitset layout for dense data. For dense data, the
bitset layout makes it trivial to take advantage of SIMD
parallelism. But for sparse data, the bitset layout causes
a quadratic blowup in memory usage while uint sets make
extracting SIMD parallelism challenging.

Making these layout choices is challenging, as the optimal
choice depends both on the characteristics of the data, such
as density, and the characteristics of the query. We first
describe layouts and intersection algorithms in Sections 4.1
and 4.2. This serves as background for the tradeoff study we
perform in Section 4.3, where we explore the proper granu-
larity at which to make layout decisions. Finally, we present
our automatic optimizer and show that it is close to an un-
achievable lower-bound optimal in Section 4.4. This study
serves as the basis for our automatic layout optimizer that
we use inside of the EmptyHeaded storage engine.

4.1 Layouts
In the following, we describe the bitset layout in Emp-

tyHeaded. We omit a description of the uint layout as it
is just an array of 32-bit unsigned integers. We also detail
how both layouts support associated data values.

BITSET. The bitset layout stores a set of pairs (offset,
bitvector), as shown in Figure 4. The offset is the index of
the smallest value in the bitvector. Thus, the layout is a
compromise between sparse and dense layouts. We refer to
the number of bits in the bitvector as the block size. Emp-
tyHeaded supports block sizes that are powers of two with a
default of 256.5 As shown, we pack the offsets contiguously,
which allows us to regard the offsets as a uint layout; in
turn, this allows EmptyHeaded to use the same algorithm
to intersect the offsets as it does for the uint layout.

Associated Values. Our sets need to be able to store asso-
ciated values such as pointers to the next level of the trie or
annotations of arbitrary types. In EmptyHeaded, the asso-
ciated values for each set also use different underlying data
layouts based on the type of the underlying set. For the bit-
set layout we store the associated values as a dense vector
(where associated values are accessed based upon the data
value in the set). For the uint layout we store the associ-
ated values as a sparse vector (where the associated values
are accessed based upon the index of the value in the set).

4.2 Intersections
We briefly present an overview of the intersection algo-

rithms EmptyHeaded uses for each layout. This serves as

5 The width of an AVX register.
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the background for our tradeoff study in Section 4.3. We
remind the reader that the min property presented in Sec-
tion 2.1 must hold for set intersections so that a worst-case
optimal runtime can be guaranteed in EmptyHeaded.

UINT ∩ UINT. For the uint layout, we implemented and
tested five state-of-the-art SIMD set intersections [6, 7, 15,
39](see Appendix C.2). For uint intersections we found
that the size of two sets being intersected may be drasti-
cally different. This is another type of skew, which we call
cardinality skew. So-called galloping algorithms [53] allow
one to run in time proportional to the size of the smaller
set, which copes with cardinality skew. However, for sets
that are of similar size, galloping algorithms may have addi-
tional overhead. Therefore, like others [7,15], EmptyHeaded
uses a simple hybrid algorithm that selects a SIMD gallop-
ing algorithm when the ratio of cardinalities is greater than
32:1, and a SIMD shuffling algorithm otherwise.

BITSET ∩ BITSET. Our bitset is conceptually a two-layer
structure of offsets and blocks. Offsets are stored using uint

sets. Each offset determines the start of the corresponding
block. To compute the intersection, we first find the com-
mon blocks between the bitsets by intersecting the offsets
using a uint intersection followed by SIMD AND instructions
to intersect matching blocks. In the best case, i.e., when
all bits in the register are 1, a single hardware instruction
computes the intersection of 256 values.

UINT ∩ BITSET. To compute the intersection between a
uint and a bitset, we first intersect the uint values with
the offsets in the bitset. We do this to check if it is possible
that some value in a bitset block matches a uint value. As
bitset block sizes are powers of two in EmptyHeaded, this
can be accomplished by masking out the lower bits of each
uint value in the comparison. This check may result in false
positives, so, for each matching uint and bitset block we
check whether the corresponding bitset blocks contain the
uint value by probing the block. We store the result as a
uint as the intersection of two sets can be at most as dense
as the sparser set.6 Notice that this algorithm satisfies the
min property with a constant determined by the block size.

6 Estimating data characteristics like output cardinality a
priori is a hard problem [33] and we found it is too costly to
reinspect the data after each operation.

Dataset
Nodes
[M]

Dir.
Edges
[M]

Undir.
Edges
[M]

Density
Skew

Description

Google+ [42] 0.11 13.7 12.2 1.17 User network
Higgs [42] 0.4 14.9 12.5 0.23 Tweets about

Higgs Boson
LiveJournal [22] 4.8 68.5 43.4 0.09 User network
Orkut [4] 3.1 117.2 117.2 0.08 User network
Patents [1] 3.8 16.5 16.5 0.09 Citation

network
Twitter [16] 41.7 1,468.4 757.8 0.12 Follower

network

Table 3: Graph datasets presented in Section 5.1.1 that are
used in the experiments.

4.3 Tradeoffs
We explore three different levels of granularity to decide

between uint and bitset layouts in our trie data structure:
the relation level, the set level, and the block level.

Relation Level. Set layout decisions at the relation level
force the data in all relations to be stored using the same
layout and therefore do not address density skew. The sim-
plest layout in memory is to store all sets in every trie using
the uint layout. Unfortunately, it is difficult to fully exploit
SIMD parallelism using this layout, as only four elements fit
in a single SIMD register.7 In contrast, bitvectors can store
256 elements in a single SIMD register. However, bitvectors
are inefficient on sparse data and can result in a quadratic
blowup of memory usage. Therefore, one would expect un-
signed integer arrays to be well suited for sparse sets and
bitvectors for dense sets. Figure 5 illustrates this trend. Be-
cause of the sparsity in real-world data, we found that uint
provides the best performance at the relation level.

Set Level. Real-world data often has a large amount of den-
sity skew, so both the uint and bitset layouts are useful.
At the set level we simply decide on a per-set level if the
entire set should be represented using a uint or a bitset

layout. Furthermore, we found that our uint and bitset in-
tersection can provide up to a 6x performance increase over
the best homogeneous uint intersection and a 132x increase
over a homogeneous bitset intersection. We show in Sec-
tions 4.4 and 5.3 that the impact of mixing layouts at the
set level on real data can increase overall query performance
by over an order of magnitude.

Block Level. Selecting a layout at the set level might be
too coarse if there is internal skew. For example, set level
layout decisions are too coarse-grained to optimally exploit
a set with a large sparse region followed by a dense region.
Ideally, we would like to treat dense regions separately from
sparse ones. To deal with skew at a finer granularity, we
propose a composite set layout that regards the domain as a
series of fixed-sized blocks; we represent sparse blocks using
the uint layout and dense blocks using the bitset layout.
We show in Figure 6 that on synthetic data the composite
layout can outperform the uint and bitset layouts by 2x.

7In the Intel Ivy Bridge architecture only SSE instructions
contain integer comparison mechanisms; therefore we are
forced to restrict ourselves to a 128 bit register width.



Dataset Relation level Set level Block level

Google+ 7.3x 1.1x 3.2x

Higgs 1.6x 1.4x 2.4x
LiveJournal 1.3x 1.4x 2.0x
Orkut 1.4x 1.4x 2.0x
Patents 1.2x 1.6x 1.9x

Table 4: Relative time of the level optimizers on triangle
counting compared to the oracle.

4.4 Layout Optimizer
Our synthetic experiments in Section 4.3 show there is

no clear winner, as the right granularity at which to make
a layout decision depends on the data characteristics and
the query. To determine if our system should make layout
decisions at a relation, set, or block level on real data, we
compare each approach to the time of a lower-bound oracle
optimizer. We found that while running on the real graph
datasets shown in Table 3, choosing layouts at the set level
provided the best overall performance (see Table 4).

Oracle Comparison. The oracle optimizer we compare to
provides a lower bound as it is able to freely select amongst
all layouts per set operation. Thus, it is allowed to choose
any layout and intersection combination while assuming per-
fect knowledge of the cost of each intersection. We imple-
ment the oracle optimizer by brute-force, running all possi-
ble layout and algorithm combinations for every set inter-
section in a given query. The oracle optimizer then counts
only the cost of the best-performing combination (from all
possible combinations), therefore providing a lower bound
for the EmptyHeaded optimizer. On the triangle counting
query, the set level optimizer was at most 1.6x off the opti-
mal oracle performance, while choosing at the relation and
block levels can be up to 7.3x and 3.2x slower respectively
than the oracle. Although more sophisticated optimizers ex-
ist, and were tested in the EmptyHeaded engine, we found
that this simple set level optimizer performed within 10%-
40% of the oracle optimizer on real graph data. Because of
this we use the set optimizer by default inside of Empty-
Headed (and for the remainder of this paper).

Set Optimizer. The set optimizer in EmptyHeaded selects
the layout for a set in isolation based on its cardinality and
range. It selects the bitset layout when each value in the set
consumes at most as much space as a SIMD (AVX) register
and the uint layout otherwise. The optimizer uses the bit-

set layout with a block size equal to the range of the data in
the set. We find this to be more effective than a fixed block
size since it lacks the overhead of storing multiple offsets.

5. EXPERIMENTS
We compare EmptyHeaded against state-of-the-art high-

and low-level specialized graph engines on standard graph
benchmarks. We show that by using our optimizations from
Section 3 and Section 4, EmptyHeaded is able to compete
with specialized graph engines.

5.1 Experiment Setup
We describe the datasets, comparison engines, metrics,

and experiment setting used to validate that EmptyHeaded
competes with specialized engines in Sections 5.2 and 5.3.

5.1.1 Datasets
Table 3 provides a list of the 6 popular datasets that

we use in our comparison to other graph analytics engines.
LiveJournal, Orkut, and Patents are graphs with a low amount
of density skew, and Patents is much smaller graph in com-
parison to the others. Twitter is one of the largest publicly
available datasets and is a standard benchmarking dataset
that contains a modest amount of density skew. Higgs is a
medium-sized graph with a modest amount of density skew.
Google+ is a graph with a large amount of density skew.

5.1.2 Comparison Engines
We compare EmptyHeaded against popular high- and low-

level engines in the graph domain. We also compare to
the high-level LogicBlox engine, as it is the first commer-
cial database with a worst-case optimal join optimizer.

Low-Level Engines. We benchmark several graph analytic
engines and compare their performance. The engines that
we compare to are PowerGraph v2.2 [21], the latest release
of commercial graph tool (CGT-X), and Snap-R [43]. Each
system provides highly optimized shared memory implemen-
tations of the triangle counting query. Other shared memory
graph engines such as Ligra [50] and Galois [8] do not pro-
vide optimized implementations of the triangle query and
requires one to write queries by hand. We do provide a
comparison to Galois v2.2.1 on PageRank and SSSP. Galois
has been shown to achieve performance similar to that of
Intel’s hand-coded implementations [29] on these queries.

High-Level Engines. We compare to LogicBlox v4.3.4 on
all queries since LogicBlox is the first general purpose com-
mercial engine to provide similar worst-case optimal join
guarantees. LogicBlox also provides a relational model that
makes complex queries easy and succinct to express. It is
important to note that LogicBlox is full-featured commercial
system (supports transactions, updates, etc.) and therefore
incurs inefficiencies that EmptyHeaded does not. Regard-
less, we demonstrate that using GHDs as the intermediate
representation in EmptyHeaded’s query compiler not only
provides tighter theoretical guarantees, but provides more
than a three orders of magnitude performance improvement
over LogicBlox. We further demonstrate that our set lay-
outs account for over an order of magnitude performance
advantage over the LogicBlox design. We also compare to
SociaLite [23] on each query as it also provides high-level lan-
guage optimizers, making the queries as succinct and easy
to express as in EmptyHeaded. Unlike LogicBlox, SociaLite
does not use a worst-case optimal join optimizer and there-
fore suffers large performance gaps on graph pattern queries.
Our experimental setup of the LogicBlox and SociaLite en-
gines was verified by an engineer from each system and our
results are in-line with previous findings [9, 23,29].

Omitted Comparisons. We compared EmptyHeaded to
GraphX [19] which is a graph engine designed for scale-
out performance. GraphX was consistently several orders
of magnitude slower than EmptyHeaded’s performance in a
shared-memory setting. We also compared to a commer-
cial database and PostgreSQL but they were consistently
over three orders of magnitude off of EmptyHeaded’s per-
formance. We exclude a comparison to Grail [20] as its per-



formance has been shown to be comparable to or substan-
tially worse than PowerGraph [21], to which we provide a
comparison.

5.1.3 Metrics
We measure the performance of EmptyHeaded and other

engines. For end-to-end performance, we measure the wall-
clock time for each system to complete each query. This
measurement excludes the time used for data loading, out-
putting the result, data statistics collection, and index cre-
ation for all engines. We repeat each measurement seven
times, eliminate the lowest and the highest value, and re-
port the average. Between each measurement of the low-
level engines we wipe the caches and re-load the data to
avoid intermediate results that each engine might store. For
the high-level engines we perform runs back-to-back, elim-
inating the first run which can be an order of magnitude
worse than the remaining runs. We do not include compi-
lation times in our measurements. Low-level graph engines
run as a stand-alone program (no compilation time) and
we discard the compilation time for high-level engines (by
excluding their first run, which includes compilation time).
Nevertheless, our unoptimized compilation process (under
two seconds for all queries in this paper) is often faster than
other high-level engines’ (Socialite or LogicBlox).

5.1.4 Experiment Setting
EmptyHeaded is an in-memory engine that runs and is

evaluated on a single node server. As such, we ran all ex-
periments on a single machine with a total of 48 cores on
four Intel Xeon E5-4657L v2 CPUs and 1 TB of RAM. We
compiled the C++ engines (EmptyHeaded, Snap-R, Power-
Graph, TripleBit) with g++ 4.9.3 (-O3) and ran the Java-
based engines (CGT-X, LogicBlox, SociaLite) on OpenJDK
7u65 on Ubuntu 12.04 LTS. For all engines, we chose buffer
and heap sizes that were at least an order of magnitude
larger than the dataset itself to avoid garbage collection.

5.2 Experimental Results
We provide a comparison to specialized graph analytics

engines on several standard workloads. We demonstrate
that EmptyHeaded outperforms the graph analytics engines
by 2-60x on graph pattern queries while remaining compet-
itive on PageRank and SSSP.

5.2.1 Graph Pattern Queries
We first focus on the triangle counting query as it is a

standard graph pattern benchmark with hand-tuned imple-
mentations provided in both high- and low-level engines.
Furthermore, the triangle counting query is widely used in
graph processing applications and is a common subgraph
query pattern [30, 47]. To be fair to the low-level frame-
works, we compare the triangle query only to frameworks
that provide a hand-tuned implementation. Although we
have a high-level optimizer, we outperform the graph ana-
lytics engines by 2-60x on the triangle counting query.

As is the standard, we run each engine on pruned versions
of these datasets, where each undirected edge is pruned such
that srcid > dstid and id’s are assigned based upon the de-
gree of the node. This process is standard as it limits the
size of the intersected sets and has been shown to empiri-
cally work well [49]. Nearly every graph engine implements
pruning in this fashion for the triangle query.

Low-Level High-Level

Dataset EH PG CGT-X SR SL LB

Google+ 0.31 8.40x 62.19x 4.18x 1390.75x 83.74x
Higgs 0.15 3.25x 57.96x 5.84x 387.41x 29.13x
LiveJournal 0.48 5.17x 3.85x 10.72x 225.97x 23.53x
Orkut 2.36 2.94x - 4.09x 191.84x 19.24x
Patents 0.14 10.20x 7.45x 22.14x 49.12x 27.82x
Twitter 56.81 4.40x - 2.22x t/o 30.60x

Table 5: Triangle counting runtime (in seconds) for Empty-
Headed (EH) and relative slowdown for other engines includ-
ing PowerGraph (PG), a commercial graph tool (CGT-X),
Snap-Ringo (SR), SociaLite (SL) and LogicBlox (LB). 48
threads used for all engines. “-” indicates the engine does
not process over 70 million edges. “t/o” indicates the engine
ran for over 30 minutes.

Takeaways. The results from this experiment are in Ta-
ble 5. On very sparse datasets with low density skew (such
as the Patents dataset) our performance gains are modest as
it is best to represent all sets in the graph using the uint lay-
out, which is what many competitor engines already do. As
expected, on datasets with a larger degree of density skew,
our performance gains become much more pronounced. For
example, on the Google+ dataset, with a high density skew,
our set level optimizer selects 41% of the neighborhood sets
to be bitsets and achieves over an order of magnitude per-
formance gain over representing all sets as uints. LogicBlox
performs well in comparison to CGT-X on the Higgs dataset,
which has a large amount of cardinality skew, as they use
a Leapfrog Triejoin algorithm [53] that optimizes for cardi-
nality skew by obeying the min property of set intersection.
EmptyHeaded similarly obeys the min property by select-
ing amongst set intersection algorithms based on cardinality
skew. In Section 5.3 we demonstrate that over a two orders
of magnitude performance gain comes from our set layout
and intersection algorithm choices.

Omitted Comparison. We do not compare to Galois on
the triangle counting query, as Galois does not provide an
implementation and implementing it ourselves would require
us to write a custom set intersection in Galois (where >95%
of the runtime goes). We describe how to implement high-
performance set intersections in-depth in Section 4 and Emp-
tyHeaded’s triangle counting numbers are comparable to In-
tel’s hand-coded numbers which are slightly (10-20%) faster
than the Galois implementation [29]. We provide a compar-
ison to Galois on SSSP and PageRank in Section 5.2.2.

5.2.2 Graph Analytics Queries
Although EmptyHeaded is capable of expressing a vari-

ety of different workloads, we benchmark PageRank and
SSSP as they are common graph benchmarks. In addition,
these benchmarks illustrate the capability of EmptyHeaded
to process broader workloads that relational engines typi-
cally do not process efficiently: (1) linear algebra operations
(in PageRank) and (2) transitive closure (in SSSP). We run
each query on undirected versions of the graph datasets and
demonstrate competitive performance compared to special-
ized graph engines. Our results suggest that our approach
is competitive outside of classic join workloads.



Low-Level High-Level

Dataset EH G PG CGT-X SR SL LB

Google+ 0.10 0.021 0.24 1.65 0.24 1.25 7.03
Higgs 0.08 0.049 0.5 2.24 0.32 1.78 7.72
LiveJournal 0.58 0.51 4.32 - 1.37 5.09 25.03
Orkut 0.65 0.59 4.48 - 1.15 17.52 75.11
Patents 0.41 0.78 3.12 4.45 1.06 10.42 17.86
Twitter 15.41 17.98 57.00 - 27.92 367.32 442.85

Table 6: Runtime for 5 iterations of PageRank (in seconds)
using 48 threads for all engines. “-” indicates the engine
does not process over 70 million edges. EH denotes Emp-
tyHeaded and the other engines include Galois (G), Power-
Graph (PG), a commercial graph tool (CGT-X), Snap-Ringo
(SR), SociaLite (SL), and LogicBlox (LB).

Low-Level High-Level

Dataset EH G PG CGT-X SL LB

Google+ 0.024 0.008 0.22 0.51 0.27 41.81
Higgs 0.035 0.017 0.34 0.91 0.85 58.68
LiveJournal 0.19 0.062 1.80 - 3.40 102.83
Orkut 0.24 0.079 2.30 - 7.33 215.25
Patents 0.15 0.054 1.40 4.70 3.97 159.12
Twitter 7.87 2.52 36.90 - x 379.16

Table 7: SSSP runtime (in seconds) using 48 threads for
all engines. “-” indicates the engine does not process over
70 million edges. EH denotes EmptyHeaded and the other
engines include Galois (G), PowerGraph (PG), a commercial
graph tool (CGT-X), and SociaLite (SL). “x” indicates the
engine did not compute the query properly.

PageRank. As shown in Table 6, we are consistently 2-4x
faster than standard low-level baselines and more than an
order of magnitude faster than the high-level baselines on
the PageRank query. We observe competitive performance
with Galois (271 lines of code), a highly tuned shared mem-
ory graph engine, as seen in Table 6, while expressing the
query in three lines of code (Table 1). There is room for
improvement on this query in EmptyHeaded since double
buffering and the elimination of redundant joins would en-
able EmptyHeaded to achieve performance closer to the bare
metal performance, which is necessary to outperform Galois.

Single-Source Shortest Paths. We compare EmptyHeaded’s
performance to LogicBlox and specialized engines in Table 7
for SSSP while omitting a comparison to Snap-R. Snap-R
does not implement a parallel version of the algorithm and
is over three orders of magnitude slower than EmptyHeaded
on this query. For our comparison we selected the highest de-
gree node in the undirected version of the graph as the start
node. EmptyHeaded consistently outperforms PowerGraph
(low-level) and SociaLite (high-level) by an order of mag-
nitude and LogicBlox by three orders of magnitude on this
query. More sophisticated implementations of SSSP than
what EmptyHeaded generates exist [32]. For example, Ga-
lois, which implements such an algorithm, observes a 2-30x
performance improvement over EmptyHeaded on this appli-
cation (Table 7). Still, EmptyHeaded is competitive with
Galois (172 lines of code) compared to the other approaches
while expressing the query in two lines of code (Table 1).

Dataset Query EH -R -RA -GHD SL LB

Google+
K4 4.12 10.01x 10.01x - t/o t/o

L3,1 3.11 1.05x 1.10x 8.93x t/o t/o
B3,1 3.17 1.05x 1.14x t/o t/o t/o

Higgs
K4 0.66 3.10x 10.69x - 666x 50.88x

L3,1 0.93 1.97x 7.78x 1.28x t/o t/o
B3,1 0.95 2.53 11.79x t/o t/o t/o

LiveJournal
K4 2.40 36.94x 183.15x - t/o 141.13x

L3,1 1.64 45.30x 176.14x 1.26x t/o t/o
B3,1 1.67 88.03x 344.90x t/o t/o t/o

Orkut
K4 7.65 8.09x 162.13x - t/o 49.76x

L3,1 8.79 2.52x 24.67x 1.09x t/o t/o
B3,1 8.87 3.99x 47.81x t/o t/o t/o

Patents
K4 0.25 328.77x 1021.77x - 20.05x 21.77x

L3,1 0.46 104.42x 575.83x 0.99x 318x 62.23x
B3,1 0.48 200.72x 1105.73x t/o t/o t/o

Table 8: 4-Clique (K4), Lollipop (L3,1), and Barbell (B3,1)
runtime in seconds for EmptyHeaded (EH) and relative run-
time for SociaLite (SL), LogicBlox (LB) and EmptyHeaded
while disabling features. “t/o” indicates the engine ran for
over 30 minutes. “-R” is EH without layout optimizations.
“-RA” is EH without both layout (density skew) and inter-
section algorithm (cardinality skew) optimizations. “-GHD”
is EH without GHD optimizations (single-node GHD).

5.3 Micro-Benchmarking Results
We detail the effect of our contributions on query per-

formance. We introduce two new queries and revisit the
Barbell query (introduced in Section 3) in this section: (1)
K4 is a 4-clique query representing a more complex graph
pattern, (2) L3,1 is the Lollipop query that finds all 3-cliques
(triangles) with a path of length one off of one vertex, and
(3) B3,1 the Barbell query that finds all 3-cliques (triangles)
connected by a path of length one. We demonstrate how
using GHDs in the query compiler and the set layouts in
the execution engine can have a three orders of magnitude
performance impact on the K4, L3,1, and B3,1 queries.

Experimental Setup. These queries represents pattern queries
that would require significant effort to implement in low-
level graph analytics engines. For example, the simpler tri-
angle counting implementation is 138 lines of code in Snap-R
and 402 lines of code in PowerGraph. In contrast, each query
is one line of code in EmptyHeaded. As such, we do not
benchmark the low-level engines on these complex pattern
queries. We run COUNT(*) aggregate queries in this section
to test the full effect of GHDs on queries with the potential
for early aggregation. The K4 query is symmetric and there-
fore runs on the same pruned datasets as those used in the
triangle counting query in Section 5.2.1. The B3,1 and L3,1

queries run on the undirected versions of these datasets.

5.3.1 Query Compiler Optimizations
GHDs enable complex queries to run efficiently in Emp-

tyHeaded. Table 8 demonstrates that when the GHD op-
timizations are disabled (“-GHD”), meaning a single node
GHD query plan is run, we observe up to an 8x slowdown on
the L3,1 query and over a three orders of magnitude perfor-
mance improvement on theB3,1 query. Interestingly, density
skew matters again here, and for the dataset with the largest
amount of density skew, Google+, EmptyHeaded observes



the largest performance gain. GHDs enable early aggrega-
tion here and thus eliminate a large amount of computation
on the datasets with large output cardinalities (high den-
sity skew). LogicBlox, which currently uses only the generic
worst-case optimal join algorithm (no GHD optimizations)
in their query compiler, is unable to complete the Lollipop
or Barbell queries across the datasets that we tested. GHD
optimizations do not matter on the K4 query as the optimal
query plan is a single node GHD.

5.3.2 Execution Engine Optimizations
Table 8 shows the relative time to complete graph queries

with features of our engine disabled. The “-R” column rep-
resents EmptyHeaded without SIMD set layout optimiza-
tions and therefore density skew optimizations. This most
closely resembles the implementation of the low-level engines
in Table 5, who do not consider mixing SIMD friendly lay-
outs. Table 8 shows that our set layout optimizations consis-
tently have a two orders of magnitude performance impact
on advanced graph queries. The “-RA” column shows Emp-
tyHeaded without density skew (SIMD layout choices) and
cardinality skew (SIMD set intersection algorithm choices).
Our layout and algorithm optimizations provide the largest
performance advantage (>20x) on extremely dense (bitset)
and extremely sparse (uint) set intersections (see Appendix C.1),
which is what happens on the datasets with low density
skew here. Like others [41], we found that explicitly dis-
abling SIMD vectorization, in addition to our layout and
algorithm choices, decreases our performance by another 2x
(see Appendix A.1.2). Our contribution here is the mixing of
data representations (“-R”) and set intersection algorithms
(“-RA”), both of which are deeply intertwined with SIMD
parallelism. In total, Table 8 and our discussion validate
that the set layout and algorithmic features have merit and
enable EmptyHeaded to compete with graph engines.

6. RELATED WORK
Our work extends previous work in four main areas: join

processing, graph processing, SIMD processing, and set in-
tersection processing.

Join Processing. The first worst-case optimal join algo-
rithm was recently derived [18]. The LogicBlox (LB) en-
gine [53] is the first commercial database engine to use a
worst-case optimal algorithm. Researchers have also inves-
tigated worst-case optimal joins in distributed settings [34]
and have looked at minimizing communication costs [10] or
processing on compressed representations [48]. Recent the-
oretical advances [24,26] have suggested worst-case optimal
join processing is applicable beyond standard join pattern
queries. We continue in this line of work. The algorithm
in EmptyHeaded is a derived from the worst-case optimal
join algorithm [18] and uses set intersection operations opti-
mized for SIMD parallelism, an approach we exploit for the
first time. Additionally, our algorithm satisfies a stronger
optimality property that we describe in Section 3.

Graph Processing. Due to the increase in main memory
sizes, there is a trend toward developing shared memory
graph analytics engines. Researchers have released high
performance shared memory graph processing engines, most
notably SociaLite [23], Green-Marl [35], Ligra [50], and Ga-

lois [8]. With the exception of SociaLite, each of these en-
gines proposes a new domain-specific language for graph an-
alytics. SociaLite, based on datalog, presents a engine that
more closely resembles a relational model. Other engines
such as PowerGraph [21], Graph-X [19], and Pregel [14] are
aimed at scale-out performance. The merit of these special-
ized approaches against traditional online analytical process-
ing (OLAP) engines is a source of much debate [5], as some
researchers believe general approaches can compete with and
outperform these specialized designs [12, 19]. Recent prod-
ucts, such as SAP HANA, integrate graph accelerators as
part of a OLAP engine [27]. Others [20] have shown that re-
lational engines can compete with distributed engines [14,21]
in the graph domain, but have not targeted shared-memory
baselines. We hope our work contributes to the debate about
which portions of the workload can be accelerated.

SIMD Processing. Recent research has focused on taking
advantage of the hardware trend toward increasing SIMD
parallelism. DB2 Blu integrated an accelerator supporting
specialized heterogeneous layouts designed for SIMD paral-
lelism on predicate filters and aggregates [37]. Our approach
is similar in spirit to DB2 Blu, but applied specifically to
join processing. Other approaches such as WideTable [45]
and BitWeaving [44] investigated and proposed several novel
ways to leverage SIMD parallelism to speed up scans in
OLAP engines. Furthermore, researchers have looked at op-
timizing popular database structures, such as the trie [38],
and classic database operations [55] to leverage SIMD par-
allelism. Our work is the first to consider heterogeneous
layouts to leverage SIMD parallelism as a means to improve
worst-case optimal join processing.

Set Intersection Processing. In recent years there has been
interest in SIMD sorted set intersection techniques [6, 7, 15,
39]. Techniques such as the SIMDShuffling algorithm [39]
break the min property of set intersection but often work
well on graph data, while techniques such as SIMDGal-
loping [7] that preserve the min property rarely work well
on graph data. We experiment with these techniques and
slightly modify our use of them to ensure min property of
the set intersection operation in our engine. We use this
as a means to speed up set intersection, which is the core
operation in our approach to join processing.

7. CONCLUSION
We demonstrate the first general-purpose worst-case op-

timal join processing engine that competes with low-level
specialized engines on standard graph workloads. Our ap-
proach provides strong worst-case running times and can
lead to over a three orders of magnitude performance gain
over standard approaches due to our use of GHDs. We per-
form a detailed study of set layouts to exploit SIMD paral-
lelism on modern hardware and show that over a three orders
of magnitude performance gain can be achieved through se-
lecting among algorithmic choices for set intersection and
set layouts at different granularities of the data. Finally,
we show that on popular graph queries our prototype en-
gine can outperform specialized graph analytics engines by
4-60x and LogicBlox by over three orders of magnitude. Our
study suggests that this type of engine is a first step toward
unifying standard SQL and graph processing engines.
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APPENDIX
A. APPENDIX FOR SECTION 2

A.1 Dictionary Encoding and Node Ordering

A.1.1 Node Ordering
Because EmptyHeaded maps each node to an integer value,

it is natural to consider the performance implications of
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Ordering Higgs LiveJournal

Shingles 1.67 9.14

hybrid 3.77 24.41
BFS 2.42 15.80

Degree 1.43 9.93
Reverse Degree 1.40 8.47

Strong Run 2.69 21.67

Table 9: Node ordering times in seconds on two popular
graph datasets.
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Figure 7: Effect of data ordering on triangle counting with
synthetic data.

these mappings. Node ordering can affect the performance
in two ways: It changes the ranges of the neighborhoods
and, for queries that use symmetry breaking, it affects the
number of comparisons needed to answer the query. In the
following, we discuss the impact of node ordering on triangle
counting with and without symmetry breaking.

We explore the impact of node ordering on query perfor-
mance using triangle counting query on synthetically gener-
ated power law graphs with different power law exponents.
We generate the data using the Snap Random Power-Law
graph generator and vary the Power-Law degree exponents
from 1 to 3. The best ordering can achieve over an order of
magnitude better performance than the worst ordering on
symmetrical queries such as triangle counting.

We consider the following orderings:

Random random ordering of vertices. We use this as a
baseline to measure the impact of the different order-
ings.

BFS labels the nodes in breadth-first order.

Strong-Runs first sorts the node by degree and then start-
ing from the highest degree node, the algorithm assigns
continuous numbers to the neighbors of each node. This
ordering can be seen as an approximation of BFS.

Degree this ordering is a simple ordering by descending
degree which is widely used in existing graph systems.

Rev-Degree labels the nodes by ascending degree.

Shingle an ordering scheme based on the similarity of neigh-
borhoods [11].

In addition to these orderings, we propose a hybrid or-
dering algorithm hybrid that first labels nodes using BFS
followed by sorting by descending degree. Nodes with equal
degree retain their BFS ordering with respect to each other.
The hybrid ordering is inspired by our findings that order-
ing by degree and BFS provided the highest performance on
symmetrical queries. Figure 7 shows that graphs with a low

Default Symmetrically Filtered

Dataset uint EmptyHeaded uint EmptyHeaded

Google+ 1.0x 1.4x 1.8x 4.7x
Higgs 0.9x 1.2x 3.0x 1.9x
LiveJournal 1.2x 1.1x 1.7x 1.6x
Orkut 1.1x 1.1x 1.4x 1.5x
Patents 1.2x 1.1x 1.9x 1.3x

Table 10: Relative time of random ordering compared to
ordering by degree.

Default Symmetrically Filtered

Dataset -S -R -SR -S -R -SR

Google+ 1.0x 3.0x 7.5x 1.0x 4.9x 13.4x

Higgs 1.5x 3.9x 4.8x 1.2x 0.9x 1.7x
LiveJournal 1.6x 1.0x 1.6x 1.2x 0.9x 1.2x
Orkut 1.8x 1.1x 2.0x 1.4x 1.0x 1.6x
Patents 1.3x 0.9x 1.1x 1.0x 0.7x 0.8x

Table 11: Relative time when disabling features on the trian-
gle counting query. Symmetrically filtered refers to the data
preprocessing step which is specific to symmetric queries.
“-S” is EmptyHeaded without SIMD. “-R” is EmptyHeaded
using uint at the graph level.

power law coefficient achieve the best performance through
ordering by degree and that a BFS ordering works best on
graphs with a high power law coefficient. Figure 7 shows
the performance of hybrid ordering and how it tracks the
performance of BFS or degree where each is optimal.

Each ordering incurs the cost of performing the actual
ordering of the data. Table 9 shows examples of node or-
dering times in EmptyHeaded. The execution time of the
BFS ordering grows linearly with the number of edges, while
sorting by degree or reverse degree depends on the number
of nodes. The cost of the hybrid ordering is the sum of the
costs of the BFS ordering and ordering by degree.

A.1.2 Pruning Symmetric Queries
We explore the effect of node ordering on query perfor-

mance with and without the data pruning that symmetrical
queries enable. Symmetric queries such as the triangle query
or the 4-clique query on undirected graphs produce equiva-
lent results for graphs where each src, dst pair occurs only
once and datasets where each src, dst has a corresponding
dst, src pair (the latter producing a result that is a multi-
ple of the former). Specialized engines take advantage of
restricted optimization that only holds for symmetric pat-
terns. For this experiment, we measure the effect of the node
orderings introduced in Appendix A.1.1 on five datasets with
different set layouts. We show that node ordering only has a
substantial impact on queries that enable symmetry break-
ing and that our layout optimizations typically have a larger
impact on the queries which do not enable symmetry break-
ing, which is the more general case.

We use the relative triangle counting performance on 5
datasets with a random ordering and ordering by degree as
a proxy for the impact of node ordering. For each dataset,
we measure the triangle counting performance with random
ordering and ordering by degree (the default standard), with
and without pruning, and with the EmptyHeaded set level
optimizer and with a homogeneous uint layout. We call
pruned data on symmetrical queries symmetrically filtered.
We report the relative performance of the random order-
ing compared to ordering by degree. Table 10 shows that
ordering does not have a large impact on queries that do



not enable symmetry breaking. In addition, Table 10 shows
that our optimizer is more robust to various orderings in
the special cases where symmetry filtering is allowed. Ta-
ble 11 shows that our optimizations typically have a larger
impact on data which is not symmetrically filtered. This is
important as symmetrical queries are infrequent and their
symmetrical property breaks with even a simple selection.

A.2 Extended Query Language Discussion

Conjunctive Queries: Joins, Projections, Selections.
Equality joins are expressed in EmptyHeaded as simple con-
junctive queries. We show EmptyHeaded’s’ syntax for two
cyclic join queries in Table 1: the 3-clique query (also known
as triangle or K3), and the Barbell query (two 3-cliques
connected by a path of length 1). EmptyHeaded easily en-
ables selections and projections in its query language as well.
We enable projections through the user directly annotating
which attributes appear in the head. We enable selections
by directly annotating predicates on attribute values in the
body (e.g. b = ‘Chris’).

We illustrate how our query language works by example
for the PageRank query:

Example A.1. Table 1 shows an example of the syntax
used to express the PageRank query in EmptyHeaded. The
first line specifies that we aggregate over all the edges in the
graph and count the number of source nodes assuming our
Edge relation is two-attribute relation filled with (src, dst)
pairs. For an undirected graph this simply counts the number
of nodes in the graph and assigns it to the relation N which
is really just a scalar integer. By definition the COUNT ag-
gregation and by default the SUM use an initialization value
of 1 if the relation is not annotated. The second line of the
query defines the base case for recursion. Here we simply
project away the z attributes and assign an annotation value
of 1/N (where N is our scalar relation holding the number
of nodes). Finally, the third line defines the recursive rule
which joins the Edge and InvDegree relations inside the
database with the new PageRank relation. We SUM over
the z attribute in all of these relations. When aggregated
attributes are joined with each other their annotation values
are multiplied by default [26]. Therefore we are perform-
ing a matrix-vector multiplication. After the aggregation the
corresponding expression for the annotation y is applied to
each aggregated value. This is run for a fixed number (5)
iterations as specified in the head.

B. APPENDIX FOR SECTION 3

B.1 Selections
Implementing high performance selections in EmptyHeaded

requires three additional optimizations that significantly ef-
fect performance: (1) pushing down selections within the
worst-case optimal join algorithm, (2) index layout trade-
offs, and (3) pushing down selections across GHD nodes.
The first two points are trivial so we briefly overview them
next while providing a detailed description and experiment
for pushing down selections across GHDs in Appendix B.1.1.
We narrow our scope in this section to only equality selec-
tions, but our techniques are general and can be applied to
general selection constraints.

v1

y

z

x

z’

y’

x’

R

S

T

U

T’

S’

R’

λ:R,S,T 
χ:x,y,z 

v0

λ:U
χ:x,x’

v2

λ:R’,S’,T’ 
χ:x’,y’,z’ 

v0

λ:R,S,T,R’,S’,T’ 
χ:x,y,z,x’,y’,z’ 

v0

λ:R,S,T,U,V,Q
χ:x,y,z,w 

v1

λ:P 
χ:x,’node’ 

v1

λ:R,S,T,U,V,Q
χ:x,y,z,w 

v0

λ:P 
χ:x,’node’ 

(a) GHD without pushing
down

v1

y

z

x

z’

y’

x’

R

S

T

U

T’

S’

R’

λ:R,S,T 
χ:x,y,z 

v0

λ:U
χ:x,x’

v2

λ:R’,S’,T’ 
χ:x’,y’,z’ 

v0

λ:R,S,T,R’,S’,T’ 
χ:x,y,z,x’,y’,z’ 

v0

λ:R,S,T,U,V,Q
χ:x,y,z,w 

v1

λ:P 
χ:x,’node’ 

v1

λ:R,S,T,U,V,Q
χ:x,y,z,w 

v0

λ:P 
χ:x,’node’ 

(b) GHD with pushing
down

Figure 8: We show two possible GHDs for the 4-clique se-
lection query.

Within a Node. Pushing down selections within a GHD
node is akin to rearranging the attribute ordering for the
generic worst-case optimal algorithm. Simply put, the at-
tributes with selections should come first in the attribute or-
dering forcing the attributes with selections to be processed
first in Algorithm 1.

Index Layouts. The data layouts matter again here as plac-
ing the selected attributes first in Algorithm 1, causes these
attributes to appear in the first levels of the trie which are
often dense and therefore best represented as a bitset. For
equality selections this is enables us to perform the actual
selection in constant time versus a binary search in an un-
signed integer array.

B.1.1 Across Nodes
Pushing down selections across nodes in EmptyHeaded’s

query plans corresponds to changing the criteria for choosing
a GHD described in Section 3.2. Our goal is to have high-
selectivity or low-cardinality nodes be pushed down as far
as possible in the GHD so that they are executed earlier in
our bottom-up pass. We accomplish this by adding three
additional steps to our GHD optimizer:

1. Find optimal GHDs T with respect to fhw, changing V
in the AGM constraint to be only the attributes with-
out selections.

2. Let Rs be some relations with selections and let Rt be
the relations that we plan to place in a subtree. If for
each e ∈ Rs, there exists e′ ∈ Rt such that e′ covers
e’s unselected attributes, include Rs in the subtree for
Rt. This means that we may duplicate some members
of Rs to include them in multiple subtrees.

3. Of the GHDs T , choose a T ∈ T with maximal selection
depth, where selection depth is the sum of the distances
from selections to the root of the GHD.

B.1.2 Queries
To test our implementation of selections in EmptyHeaded

we ran two graph pattern queries that contained selections.
The first is a 4-clique selection query where we find all 4-
cliques connected to a specified node. The second is a barbell
selection query where we find all pairs of 3-cliques connected
to a specified node. The syntax for each query in Empty-
Headed is shown in Table 12.

Consider the 4-clique selection query:



Name Query Syntax

4-Clique-Selection S4Clique(x,y,z,w) :- R(x,y),S(y,z),T(x,z),U(x,w),V(y,w),Q(z,w),P(x,‘node’).

Barbell-Selection SBarbell(x,y,z,x’,y’,z’) :- R(x,y),S(y,z),T(x,z),U(x,‘node’),
V(‘node’,x’),R’(x’,y’),S’(y’,z’),T’(x’,z’).

Table 12: Selection Queries in EmptyHeaded

Example B.1. Figure 8 shows two possible GHDs for this
query. The GHD on the left is the one produced without us-
ing the three steps above to push down selections across GHD
nodes. This GHD does not filter out any intermediate results
across the potentially high selectivity node containing the se-
lection when results are first passed up the GHD. The GHD
on the right uses the three steps above. Here the node with
the selection is below all other nodes in the GHD, ensuring
that high selectivities are processed early in the query plan.

B.1.3 Discussion
We run COUNT(*) versions of the queries here again as

materializing the output for these queries is prohibitively
expensive. We did materialize the output for these queries
on a couple datasets and noticed our performance gap with
the competitors was still the same. We varied the selectiv-
ity for each query by changing the degree of the node we
selected. We tested this on both high and low degree nodes.

The results of our experiments are in Table 13. Pushing
down selections across GHDs can enable over a four order of
magnitude performance improvement on these queries and is
essential to enable peak performance. As shown in Table 13
the competitors are closer to EmptyHeaded when the output
cardinality is low but EmptyHeaded still outperforms the
competitors. For example, on the 4-clique selection query
on the patents dataset the query contains no output but we
still outperform LogicBlox by 3.66x and SociaLite by 5754x.

B.2 Eliminating Redundant Work
Our compiler is the first worst-case optimal join optimizer

to eliminate redundant work across GHD nodes and across
phases of code generation. Our query compiler performs a
simple analysis to determine if two GHD nodes are identical.
For each GHD node in the “bottom-up” pass of Yannakakis’
algorithm, we scan a list of the previously computed GHD
nodes to determine if the result of the current node has
already been computed. We use the conditions below to
determine if two GHD nodes are equivalent in the Barbell
query. Recognizing this provides a 2x performance increase
on the Barbell query.

We say that two GHD nodes produce equivalent results
in the “bottom-up pass” if:

1. The two nodes contain identical join patterns on the
same input relations.

2. The two nodes contain identical aggregations, selec-
tions, and projections.

3. The results from each of their subtrees are identical.

We can also eliminate the “top-down” pass of Yannakakis’
algorithm if all the attributes appearing in the result also
appear in the root node. This determines if the final query
result is present after the “bottom-up” phase of Yannakakis’
algorithm. For example, if we perform a COUNT query on
all attributes, the “top-down” pass in general is unnecessary.
We found eliminating the top down pass provided a 10%
performance improvement on the Barbell query.

Dataset Query |Out| EH -GHD SL LB

Google+
SK4

1.5E+11 154.24 6.09x t/o t/o

5.5E+7 1.08 865.95x t/o 50.91

SB3,1
4.0E+17 0.92 3.22x t/o t/o
2.5E+3 0.008 351.72x t/o t/o

Higgs
SK4

2.2E+7 1.92 14.48x t/o 58.10x

2.7E+7 2.91 9.50x t/o 52.44x

SB3,1
1.7E+12 0.060 17.36x t/o t/o
2.4E+12 0.070 14.88x t/o t/o

LiveJournal
SK4

1.7E+7 6.73 18.05x t/o 14.83x

5.1E+2 0.0095 13E3x t/o 10.46x

SB3,1
1.6E+12 0.27 6.47x t/o t/o
9.9E+4 0.0062 278.16x t/o 70.23x

Orkut
SK4

9.8E+8 208.20 1.26x t/o t/o

2.8E+5 0.020 13E+3x t/o 18.79x

SB3,1
1.1E+15 3.24 3.20x t/o t/o
2.2E+8 0.0072 1314x 21E+3X 23E+3x

Patents
SK4

0 0.011 121.70x 5754x 3.66x

9.2E+3 0.011 117.56x 5572x 10.72x

SB3,1
1.6E+1 0.0060 77.82x 223.29x 15.17x
1.1E+7 0.0066 71.22x 1073x 3296x

Table 13: 4-Clique Selection (SK4) and Barbell Selection
(SB3,1) runtime in seconds for EmptyHeaded (EH) and rel-
ative runtime for SociaLite (SL), LogicBlox (LB) and Emp-
tyHeaded while disabling optimizations. “|Out|” indicates
the output cardinality. “t/o” indicates the engine ran for
over 30 minutes. “-GHD” is EmptyHeaded without pushing
down selections across GHD nodes.

C. APPENDIX FOR SECTION 4

C.1 Additional Set layouts
We discuss three additional set layouts that EmptyHeaded

implements: pshort, variant, and bitpacked. The pshort

layout groups values with a common upper 16-bit prefix to-
gether and stores each prefix only once. The variant and
bitpacked layouts use difference encoding which encodes the
difference between successive values in a sorted list of values
(x1, δ2 = x2−x1, δ3 = x3−x2, . . . ) instead of the original val-
ues (x1, x2, x3, . . . ). The original array can be reconstructed

by computing prefix sums (xi = x1 +
∑i

n=2 xn). The bene-
fit of this approach is that the differences are always smaller
than the original values, allowing for more aggressive com-
pression. Previous work found that the variant and bit-

packed layouts both compress better and can be an order
of magnitude faster than compression tools such as LZO,
Google Snappy, FastLZ, LZ4 or gzip [7].

C.1.1 Prefix Short
The Prefix Short (pshort) layout exploits the fact that

values which are close to each other share a common prefix.
The layout consists of partitions of values sharing the same
upper 16 bit prefix. For each partition, the layout stores the
common prefix and the length of the partition. Below we
show an example of the pshort layout.



S = {65536, 65636, 65736}

0 15 16 31 32 47 48 63 64 79
v1[31..16] length v1[15..0] v2[15..0] v3[15..0]

1 3 0 100 200

C.1.2 Variant
The variant layout or Variable Byte encoding is a popular

technique that was first proposed by Thiel and Heaps in
1972 [40]. The variant layout encodes the data into units
of bytes where the lower 7 bits store the data and the 8th-bit
indicates whether the data extends to another byte or not.
The decoding procedure reads bytes sequentially. If the 8th
bit is 0 it outputs the data value and if the 8th bit is 1 the
decoder appends the data from this byte to the output data
value and moves on to the next byte. This layout is simple
to implement and reasonably efficient [40]. Below we show
an example of the variant layout.

S = {0, 2, 4}
Diff = {0, 2, 2}

uint32 byte-1 byte-2 byte-3
|S| data + cont. bit data + cont. bit data + cont. bit
3 0+0 2+0 2+0

C.1.3 Bitpacked
The bitpacked layout partitions a set into blocks and

compresses them individually. First, the layout determines
the maximum bits of entropy of the values in each block b
and then encodes each value of the block using b bits. Lemire
et al. [7] showed that this technique can be adapted to en-
code and decode values efficiently by packing and unpacking
values at the granularity of SIMD registers rather than each
value individually. Although Lemire et al. propose several
variations of the layout, we chose to implement the bit-

packed with the fastest encoding and decoding algorithms
at the cost of a worse compression ratio. An example of the
bitpacked layout is below.

Instead of computing and packing the deltas sequentially,
we use the techniques from Lemire et al. [7] to compute
deltas at the granularity of a SIMD register:

(δ5, δ6, δ7, δ8) = (x5, x6, x7, x8)− (x1, x2, x3, x4)

Next, each delta is packed to the minimum bit width of its
block SIMD register at a time, rather than sequentially. In
EmptyHeaded, we use one partition for the whole set. The
deltas for each neighborhood are computed by starting our
difference encoding from the first element in the set. For the
tail of the neighborhood that does not fit in a SIMD register
we use the variant encoding scheme.

S = {0, 2, 8}
Diff = {0, 2, 6}

uint32 byte-1 byte-2 bits[0-2] bits[3-5]
length bits/elem δ data data data
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Figure 9: Highest performing layouts during set intersection
with relative performance over uint.

C.2 Additional Set Intersection Algorithms

C.2.1 Unsigned Integer Arrays
We explore 5 unsigned integer layouts presented in the

literature.

SIMDShuffling iterates through both sets block-wise and
compares blocks of values using SIMD shuffles and com-
parisons [39].

V1 Iterates through the smaller set one-by-one and checks
each value against a block of values in the larger set
using SIMD comparisons [7].

Galloping Similar to Lemire V1, but performs a binary
search on four blocks of data in the larger set (each the
size of a SIMD register) to identify potential matches
[7].

SIMDGalloping iterates through the smaller set and per-
forms a scalar binary search in the larger set to find
a block of data with a potential match and then uses
SIMD comparisons [7].

BMiss uses SIMD instructions to compare an upper pre-
fix of values to filter out unnecessary comparisons (and
therefore unnecessary branches) [15]. Once potential
matches are found, this algorithm uses scalar compar-
isons to check the full values of the partial matches.
BMiss is designed to perform well on intersections with
low output cardinalities, as the algorithm is efficient at
filtering out values that do not match.

Figure 10 shows that the SIMDGalloping and V3 algo-
rithm outperform all other algorithms when the cardinality
difference between the two sets becomes large. Figure 11
shows that the V1 and SIMDShuffling algorithms outper-
form all other algorithms, by over 2x, when the sets have
a low density. Based on these results, by default we select
the SIMDShuffling algorithm, but when the ratio between
the cardinality of the two sets became over 1:32, like oth-
ers [7,15], we select the SIMDGalloping algorithm. Because
the sets in graph data are typically sparse, we found the im-
pact of selecting the SIMDGalloping on graph datasets to
be minimal, often under a 5% total performance impact.



LiveJournal Twitter

Mean cardinality 17.79 57.74
Max cardinality 20,334 2,997,487
Mean range 1,819,780 14,616,100
Max range 4,847,308 41,652,210

Table 14: Examples of cardinalities and ranges of sets in
popular graph datasets.
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To test cardinality skew we fix the range of the sets to
1M and the cardinality of one set to 64 while changing
the cardinality of the other set. Confirming the findings
of others [6, 7, 15, 39], we find that SIMDGalloping outper-
forms other intersection algorithms by more than 5x with
a crossover point at a cardinality ratio of 1:32. In contrast
to the other two algorithms, SIMDGalloping runs in time
proportional to the size of the smaller set. Thus, SIMDGal-
loping is more efficient when the cardinalities of the sets are
different. Figure 10 shows that when the set cardinalities are
similar, we find that SIMDShuffling and BMiss outperform
SIMDGalloping by 2x.

We also vary the range of values that we place in a set from
10K-1.2M while fixing the cardinality at 2048. Figure 11
shows the execution time for sets of a fixed cardinality with
varying ranges of numbers. BMiss is up to 5x slower when
the sets have a small range and a high output cardinality.
When the range of values is large and the output cardinality
is small the algorithm outperforms all others by up to 20%.

We find that no one algorithm dominates the others, so
EmptyHeaded switches dynamically between uint algorithms.
Based on these results, EmptyHeaded’s query engine uses
SIMDShuffling unless the ratio of the sizes of sets exceeds
32, in which case we choose SIMDGalloping as shown in
Algorithm 2. As we see in Figure 10 and Figure 11, switch-
ing to SIMDShuffling provides runtime benefits in the cases
where the cardinalities are similar. SIMDGalloping satisfies
the min property, and so trivially does Algorithm 2. Thus,
our worst-case optimality of the join algorithm is preserved.

Dataset Set Optimizer Block Optimizer

Google+ 4% 5%

Higgs 1% 6%
LiveJournal 4% 12%
Orkut 3% 8%
Patents 10% 24%

Table 15: Set level and block level optimizer overheads on
triangle counting. Overheads are the % of overall runtime
used to dynamically determine the type.

Algorithm 2 uint intersection optimizer

# | S1 | > | S2 |
def i n t e r s e c t (S1 , S2 ) :

i f | S1 | / | S2 | > th r e sho ld
return intersect SIMDGal lop ing (S1 , S2 )

else :
return i n t e r s e c t S IMDShuf f l i ng (S1 , S2 )

Algorithm 3 Set layout optimizer

def g e t l a y o u t t y p e (S ) :
i n v e r s e d e n s i t y = S . range / |S |
i f i n v e r s e d e n s i t y < S IMD r eg i s t e r s i z e :

return b i t s e t
else :

return uint

C.2.2 Additional Layouts
We discuss the intersection algorithms of the set layouts

that EmptyHeaded implements but are omitted from the
main paper.

pshort ∩ pshort. The pshort intersection uses a set in-
tersection algorithm proposed by Schlegel et al. [6]. This
algorithm depends on the range of the data and therefore
does not preserve the min property, but can process more
elements per cycle than the SIMDShuffling algorithm. The
pshort intersection uses the x86 STNII (String and Text
processing New Instruction) comparison instruction allow-
ing for a full comparison of 8 shorts, with a common upper
16 bit prefix, in one cycle. The pshort layout also enables
jumps over chunks that do not share a common upper 16 bit
prefix.

uint ∩ pshort. For the uint and pshort set intersection we
again take advantage of the STNII SIMD instruction. We
compare the upper 16-bit prefixes of the values and shuffle
the uint layout if there is a match. Next, we compare the
lower 16-bits of each set, 8 elements at a time using the
STNII instruction.

variant and bitpacked. Developing set intersections for the
variant and bitpacked types is challenging because of the
complex decoding and the irregular access pattern of the set
intersection. As a consequence, EmptyHeaded decodes the
neighborhood into an array of integers and then uses the
uint intersection algorithms when operating on a neighbor-
hood represented in the variant or bitpacked layouts.

Intersection Performance. Figure 9 displays the highest
performing layout combinations and their relative perfor-
mance increase compared to the highest performing uint

algorithm while changing the density of the input sets in
a fixed range of 1M. Unsurprisingly, the variant and bit-

packed layouts never achieve the best performance. On real
data, we found the variant and bitpacked types typically
perform the triangle counting query 2x slower due the de-
coding step. While our experiments on synthetic data show
moderate performance gains from using the pshort layout,
we found that on real data that the pshort layout is rarely
a good choice for a set in combination with other layouts.



D. APPENDIX FOR SECTION 5

D.1 Extended Triangle Counting Discussion
PowerGraph represents each neighborhood using a hash

set (with a cuckoo hash) if the degree is larger than 64 and
otherwise represents the neighborhood as a vector of sorted
node ID’s. PowerGraph incurs additional overhead due to
its programming model and parallelization infrastructure in
a shared memory setting. CGT-X uses a CSR layout and
runs Java code for queries which might not be as efficient
as native code. Snap-R prunes each neighborhood on the
fly using a simple merge sort algorithm and then intersects
each neighborhood using a custom scalar intersection over
the sets. We note that the runtimes in Table 5 do not reflect
the cost of pruning the graph in our system, PowerGraph,
SociaLite, or LogicBlox, while CGT-X and Snap-R include
this time in their overall runtime. In Snap-R we found, de-
pending on the skew in the graph, the pruning time accounts
for 2%-46% of the runtime on the triangle counting.

D.2 Memory Usage
We utilize a small amount of the available memory (1TB

RAM) for the datasets run in this paper. For example, when
running the PageRank query on the LiveJournal dataset our
engine uses at most 8362MB of memory. For comparison,
Galois uses 7915MB and PowerGraph uses 8620MB.


