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Abstract
Matrix-vector multiplication is one of the most fundamental
computing primitives. Given a matrix A ∈ FN×N and
a vector b ∈ FN , it is known that in the worst case
Θ(N2) operations over F are needed to compute Ab. Many
types of structured matrices do admit faster multiplication.
However, even given a matrix A that is known to have this
property, it is hard in general to recover a representation
of A exposing the actual fast multiplication algorithm.
Additionally, it is not known in general whether the inverses
of such structured matrices can be computed or multiplied
quickly. A broad question is thus to identify classes of
structured dense matrices that can be represented with O(N)
parameters, and for which matrix-vector multiplication (and
ideally other operations such as solvers) can be performed
in a sub-quadratic number of operations.

One such class of structured matrices that admit near-
linear matrix-vector multiplication are the orthogonal poly-
nomial transforms whose rows correspond to a family of or-
thogonal polynomials. Other well known classes include the
Toeplitz, Hankel, Vandermonde, Cauchy matrices and their
extensions (e.g. confluent Cauchy-like matrices) that are all
special cases of a low displacement rank property.

In this paper, we make progress on two fronts:
1. We introduce the notion of recurrence width of matrices.

For matrices A with constant recurrence width, we
design algorithms to compute both Ab and ATb with
a near-linear number of operations. This notion of
width is finer than all the above classes of structured
matrices and thus we can compute near-linear matrix-
vector multiplication for all of them using the same core
algorithm. Furthermore, we show that it is possible to
solve the harder problems of recovering the structured
parameterization of a matrix with low recurrence width,
and computing matrix-vector product with its inverse
in near-linear time.

2. We additionally adapt our algorithm to a matrix-vector
multiplication algorithm for a much more general class
of matrices with displacement structure: those with
low displacement rank with respect to quasiseparable
matrices. This result is a novel connection between
matrices with displacement structure and those with
rank structure, two large but previously separate classes
of structured matrices. This class includes Toeplitz-
plus-Hankel-like matrices, the Discrete Trigonometric
Transforms, and more, and captures all previously
known matrices with displacement structure under a
unified parameterization and algorithm.

Our work unifies, generalizes, and simplifies existing state-

of-the-art results in structured matrix-vector multiplication.
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Finally, we show how applications in areas such as multipoint

evaluations of multivariate polynomials can be reduced to

problems involving low recurrence width matrices.

1 Introduction

Given a generic matrix A ∈ FN×N over any field F,
the problem of matrix-vector multiplication by A has
a clear Ω(N2) lower bound in general.1 Many special
classes of matrices, however, admit multiplication algo-
rithms that only require near linear (in N) operations.
In general, any matrix A can be identified with the
smallest linear circuit that computes the linear func-
tion induced by A. This is a tight characterization of
the best possible arithmetic complexity of any matrix-
vector multiplication algorithm for A that uses linear
operations2 and captures all known structured matrix
vector multiplication algorithms. Additionally, it im-
plies the classical transposition principle [10, 14], which
states that the number of linear operations needed for
matrix-vector multiplication by A and AT are within
constant factors of each other. Thus, this quantity is
a very general characterization of the complexity of a
matrix. However, it has several shortcomings. Most
importantly, given a matrix, the problem of finding the
minimum circuit size is APX-hard [13], and the best
known upper bound on the approximation ratio is only
O(N/logN) [35]. Finally, this characterization does not
say anything about the inverse of a structured matrix,
even though A−1 is often also structured if A is. Thus,
much work in the structured matrix vector multiplica-
tion literature has focused on the following problem:

Identify the most general class of structured
matrices A so that one can in near-linear op-
erations compute both Ab and A−1b. In ad-
dition given an arbitrary matrix A, we would

1This is in terms of operations over F in exact arithmetic,
which will be our primary focus throughout this paper. Also we
will focus exclusively on computing the matrix vector product
exactly as opposed to approximately. We leave the study of
approximation and numerical stability (which are important for
computation over real/complex numbers) for future work.

2Furthermore over any infinite field F, non-linear operations
do not help, i.e. the smallest linear circuit is within a constant
factor size of the smallest arithmetic circuit [14].
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like to efficiently recover the representation of
the matrix in the chosen class.

One of most general classes studied so far is the
structure of low displacement rank. The notion of
displacement rank, which was introduced in the seminal
work of Kailath et al. [25], is defined as follows. Given
any pair of matrices (L,R), the displacement rank of A
with respect to (L,R) is the rank of the error matrix 3:

(1.1) E = LA−AR.

Until very recently, the most general structure in this
framework was studied by Olshevsky and Shokrol-
lahi [42], who show that any matrix with a displacement
rank of r with respect to Jordan form matrices L and
R supports near-linear operations matrix-vector multi-
plication. A very recent pre-print extended this result
to the case when both L and R are block companion
matrices [11]. In our first main result,

we substantially generalize these results to the
case when L and R are quasiseparable matri-
ces.

Quasiseparable matrices are a type of rank-structured
matrix, defined by imposing low-rank constraints on
certain submatrices, which have become widely used
in efficient numerical computations [55]. This result
represents a new unification of two large, important,
and previously separate classes of structured matrices,
namely those with displacement structure and those
with rank structure.

Another general class of matrices are orthogonal
polynomial transforms [1–3, 15]. We first observe that
known results on such polynomials [12, 18, 49] can be
easily extended to polynomial recurrences of bounded
width. However, these results and those for displace-
ment rank matrices tend to be proved using seemingly
disparate algorithms and techniques.

In our second main result,

we introduce the notion of recurrence width,
which captures the class of orthogonal poly-
nomial transforms as well as matrices of low
displacement rank with respect to Jordan form
matrices.

We design a simple and general near-linear-operation
matrix-vector multiplication algorithm for low recur-
rence width matrices, hence capturing these previously

3This defines the Sylvester type displacement operator. Our
algorithms work equally well for the Stein type displacement
operator A − LAR. We also note that the terminology of error
matrix to talk about the displacement operator is non-standard:
we make this change to be consistent with our general framework
where this terminology makes sense.

disparate classes. Moreover, we observe that we can
solve the harder problems of recovery (i.e. recovering
the recurrence width parameterization given a matrix)
and inverse for the polynomials recurrences of bounded
width in polynomial time. Figure 1 shows the relation-
ship between the various classes of matrices that we have
discussed, and collects the relevant known results and
our new results. (All the algorithms result in linear cir-
cuits and hence by the transposition principle, we get
algorithms for ATb and A−Tb with the same complex-
ity as Ab and A−1b respectively.)

We now focus on the two strands of work that
inspired much of our work, and describe how we capture
(and generalize) previous results in these areas. These
strands have been well-studied and have rich and varied
applications, which we summarize at the end of the
section. Throughout this section we describe square
matrices for simplicity, but we emphasize that the
recurrence width concept applies to general matrices
(see Definition 3.2).

Displacement rank. The approach of express-
ing structured matrices via their displacements and
using this to define unified algorithms for multiplica-
tion and inversion has traditionally been limited to the
four most popular classes of Toeplitz-like, Hankel-like,
Vandermonde-like, and Cauchy-like matrices [22, 40].
These classic results on displacement rank constrain
L,R to diagonal or shift matrices. Until very recently,
the most powerful results on matrix-vector multiplica-
tion for matrices with low displacement rank are in the
work of Olshevsky and Shokrollahi [42], who show that
any matrix with a displacement rank of r with respect
to Jordan form matrices L and R can be multiplied by
an arbitrary vector with Õ(rN) operations. (They use
these results and matrices to solve the Nevalinna-Pick
problem as well as solve the interpolation step in some
list decoding algorithms in a previous work [41].) Recall
that Jordan normal form matrices are a special case of
2-band upper triangular matrices. In this work, by ap-
plying the recurrence width concept (Definition 1.2), we
show that when both L and R are any triangular t-band
matrices, matrices with displacement rank of r with re-
spect to them admit fast multiplication. Furthermore,
in the restricted case of t = 2 our result matches the
previous bound [42].

In our following theorem and for the rest of the pa-
per, letM(N) denote the cost of multiplying two poly-
nomials of degree N over F (ranging from N logN to
N logN log logN) and ω be the matrix-matrix multi-
plication exponent.

Theorem 1.1. Let L and R be triangular t-band ma-
trices sharing no eigenvalues, and let A be a matrix such
that LA−AR has rank r. Then with O(tωM(N) logN)
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Operation count legend

Ab compute A−1b compute

Ab pre-processing A−1b pre-processing

Vandermonde

Recurrence width (poly)
Theorem 4.1, [16]

Õ(t2N) Õ(t2N)

Õ(tωN) Õ(tωN)

Recurrence width (matrix)
Theorem 6.1, [16]

Õ(rt2N) Õ(rt2N)

Õ(tωN) Õ((tω + r2t2)N)

Orthogonal polynomials
[12, 18]

Õ(N) Õ(N)

– –

Quasiseparable
(Displacement rank) Theorem 1.2

Õ(rtωN) Õ(rtωN)

– Õ((r + t)2tωN)

Confluent Cauchy-like
[11, 42]

Õ(rN) Õ(rN)

– Õ(rω−1N)

Block companion matrix
(Displacement rank) [11]

Õ(rN) Õ(rN)

– Õ(rω−1N)

Figure 1: Overview of results and hierarchy of matrix classes. Operation count includes pre-processing (on A only)
and computation (on A and b) where Õ(·) hides polylog factors in N . Each class has a parameter controlling the
degree of structure: t refers to the recurrence width or quasiseparability degree, and r indicates the displacement
rank. ω denotes the exponent of matrix-matrix multiplication runtime.

pre-processing operations, A and AT can be multi-
plied by any vector b in O(rt2M(N) logN) opera-
tions. With O(tωM(N) logN + r2t2M(N) log2N) pre-
processing operations, A−1 and A−T can be multiplied
by any vector in O(rt2M(N) logN) operations.

In March 2017, a pre-print [11] generalized the
result of [42] in a different direction, to the case where
L and R are block companion matrices. We show an
alternative technique that is slower than Theorem 1.1
by polylog factors, but works for even more general L
and R that subsumes the classes of both Theorem 1.1
and [11]:

Theorem 1.2. Let L and R be t-quasiseparable ma-
trices and E be rank r such that A is uniquely de-
fined by LA − AR = E. Then A and AT admit

matrix-vector multiplication in O(rtωM(N) log2N +
rt2M(N) log3N) operations. Furthermore, let-
ting this cost be denoted Mt(N, r), then with
O((r+t logN)Mt(N, r+t logN) logN) operations, A−1

and A−T also admit matrix-vector multiplication in
Mt(N, r) operations.

The notion of t-quasiseparability refers to a type of
rank-structured matrix where every submatrix not in-
tersecting the diagonal has rank at most t [19] (see
Definition 6.2). This class includes both the tri-
angular banded matrices in Theorem 1.1 which are
t-quasiseparable, and the block companion matri-
ces of [11] which are 1-quasiseparable. Other well-
known classes of matrices with displacement struc-
ture include Toeplitz-plus-Hankel-like matrices, all vari-
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ants of Discrete Cosine/Sine Transforms, Chebyshev-
Vandermonde-like matrices, and so on [39], and the
displacement operators for all of these are tridiagonal
which are 1-quasiseparable.4 To the best of our knowl-
edge, Theorem 1.2 is the most general result on near-
linear time matrix vector multiplication for matrices
with displacement rank structure, and in particular cap-
tures all currently known matrices with such structure.

Aside from strongly extending these previous im-
portant classes of structured matrices, this class of
matrices is well-behaved and nice in its own right.
They naturally inherit traits of displacement rank such
as certain multiplicative and inversion closure proper-
ties [45]. Furthermore, the class of quasiseparable ma-
trices, which was introduced relatively recently and are
still under active study [19], generalize band matrices
and their inverses and satisfy properties such as gra-
dation under addition and multiplication5 and closure
under inversion. As one consequence, the Sylvester and
Stein displacement classes with respect to quasisepara-
ble operators are essentially identical.6

Orthogonal polynomial transforms. The sec-
ond strand of work that inspired our results relates to
orthogonal polynomial transforms [1–3,15]. Any matrix
A can be represented as a polynomial transform, defined
as follows.

Definition 1.1. Let a0(X), . . . , aN−1(X) be a collec-
tion of polynomials over a field F and z0, . . . , zN−1 be a
set of points. The discrete polynomial transform matrix
A is defined by A[i, j] = ai(zj). The discrete polyno-
mial transform of a vector b with respect to the ai and
zj is given by the product Ab.

When the ai are a family of orthogonal polynomials [15],
we are left with an orthogonal polynomial transform.
Orthogonal polynomials can be characterized by the
following two term recurrence7

(1.2) ai(X) = (αiX + βi)ai−1(X) + γiai−2(X),

where αi, βi, γi ∈ F. Driscoll, Healy and Rockmore
present an algorithm to perform the orthogonal poly-
nomial transform over F = R in O(N log2N) opera-
tions [18]. Later it was shown how to perform the trans-
posed transform and inverse transform (i.e. multiplica-
tion by AT and A−1) with the same complexity [12,49].

4Some variants allow the top right and bottom left corner
elements to be non-zero; these are still 2-quasiseparable.

5For example, the sum of a p-quasiseparable matrix and q-
quasiseparable matrix is (p + q)-quasiseparable.

6A matrix has low Sylvester displacement with respect to L,R
if and only if it has low Stein displacement with respect to L−1,R.

7This is often called a three-term recurrence, but we will
consider the number of terms on the RHS to be the recurrence
length.

We observe that this class of transforms can be extended
to polynomials that satisfy a more general recurrence.
We introduce the notion of recurrence width which de-
scribes the degree of this type of structure in a matrix:

Definition 1.2. An N × N matrix A has recurrence
width t if the polynomials ai(X) =

∑N−1
j=0 A[i, j]Xj

satisfy deg(ai) ≤ i for i < t, and

(1.3) ai(X) =
t∑

j=1

gi,j(X)ai−j(X)

for i ≥ t, where the polynomials gi,j ∈ F[X] have degree
at most j.

Note that under this definition, an orthogonal poly-
nomial transform matrix has recurrence width 2.8 The
recurrence structure allows us to generate matrix vec-
tor multiplication algorithms for matrices AT and A−1

(and for A and A−T by the transposition principle) in
a simple and general way.

Theorem 1.3. Let A ∈ FN×N be a matrix with recur-
rence width t. With O(tωM(N) logN) pre-processing
operations, the products ATb and Ab can be com-
puted in O(t2M(N) logN) operations for any vector b,
and the products A−1b and A−Tb can be computed in
O(t2M(N) log2N) operations for any vector b.

In Section 4 we provide an algorithm for ATb, and
bound its complexity in Theorem 4.1. The statement
for Ab then follows from the transposition principle
(and more detail is provided in the full version of
the paper [16]). The statement for A−1b (hence
A−Tb) is proved in the full version of the paper [16].
Our algorithms are optimal in the sense that their
complexity is equal to the worst-case input size of
Θ(t2N) for a matrix with recurrence width t, up to
log factors (and if ω = 2, so is the pre-processing). In
particular, we recover the bounds of Driscoll et al. of
O(M(N) logN) in the orthogonal polynomial case [18].

The connection. Theorem 1.1 and 1.3 are special
cases of our results on the most general notion of re-
currence width. This connection is compelling because
the set of matrices with low recurrence width and those
with low displacement rank seem to be widely different.
Indeed the existing algorithms for the class of orthogo-
nal polynomials [18] and low displacement rank [42] look
very different. Specifically, the algorithm of Driscoll et

8There is a subtlety in that the orthogonal polynomial trans-
form in Definition 1.1 can be factored as the product of the matrix
in Definition 1.2 times a Vandermonde matrix on the zj . This is
covered by a generalization of Definition 1.2, see Definition 3.2
and Remark 3.1.
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al. [18] is a divide and conquer algorithm, while that of
Olshevsky and Shokrollahi [42] (and other works) heav-
ily exploits structural algebraic properties on matrices
with low displacement rank. Despite this, we show that
both of these classes of matrices can be captured by
a more abstract recurrence and handled with a single
class of superfast algorithms. Arguably our definition is
more natural since it makes polynomials front and cen-
ter while existing matrices (definitons) only use polyno-
mials in their algorithms. Thus, our definition makes
this connection more explicit.

Similarly, both classic matrices with displacement
structure [44] and those with rank structure [20] have
large but separate bodies of literature, and Theorem 1.2
shows that their structure can be combined in a way
that still admits efficient algorithms. We believe that
unifying these existing threads of disparate work is
interesting in its own right and our most important
contribution. In Section 8, we provide a more detailed
history of these threads.

Some Applications. Orthogonal polynomials and
low displacement rank matrices have applications in nu-
merous areas from signal processing to machine learn-
ing. Indeed orthogonal polynomials have their own ded-
icated conference [4]. For matrices with low displace-
ment rank, the survey by Kailath and Sayed [26] covers
more details and applications, which our matrices nat-
urally inherit. The matrix structure we discuss is also
related to notions in control theory arising from differ-
ent motivations. The notion of displacement rank is a
special case of the Sylvester equation which arises in
the stability analysis of linear dynamical systems [50].
Additionally, the more general type of recurrence width
matrices we study can be viewed as satisfying a type of
higher-order Sylvester equation which has become in-
creasingly more important in this area. Such equations
are very difficult to analyze in full generality [50], and
our notions represent one line of attack for efficient so-
lutions to these problems.

As a more concrete application, there has been re-
cent interest in the use of structured matrices as compo-
nents of neural networks, intended to replace the expen-
sive fully-connected layers (which are linear transforma-
tions represented as matrix-vector products) with fast
and compressible structures. Many ad-hoc paradigms
exist for representing structured matrices in neural net-
works [36], and it turns out several of them are instances
of a displacement rank structure. More explicitly, a re-
cent paper by Sindhwani et al. found that Toeplitz-like
matrices (which have low displacement rank with re-
spect to shift matrices) were much more effective than
standard low-rank encodings for mobile speech recogni-
tion [51]. Additionally, the theoretical guarantees of us-

ing displacement rank to compress neural networks are
beginning to be understood [59]. For the same number
of parameters, our generalized classes of dense, full-rank
structured matrices can be even more expressive than
the standard structures explored so far, so they may be
suitable for these applications.

Paper organization. Our paper is organized as
follows. In Section 2, we provide an overview of our
techniques. In Section 3, we formally define the most
general notion of recurrence width and describe the
main structural properties needed for our algorithms.
In Section 4, we describe the full algorithm for ATb
for a restricted class of recurrence width; the algorithm
for this subclass contains all the core ideas and in
particular is already more general than Definition 1.2.
In Section 5, we describe the modifications to the ATb
algorithm needed to handle the fully general definition
of recurrence width. We also elaborate on related
multiplication operations, including multiplication by
A, and multiplication by Krylov matrices. In Section 6
we provide details on the multiplication algorithms
for matrices with low displacement rank. We first
prove Theorem 1.1 by showing that those matrices have
low recurrence width, and then adapt the techniques
to cover the more general displacement structure of
Theorem 1.2. In Section 7, we show that our new
generalizations capture matrices from coding theory
that were not captured by the earlier classes. In
particular, we show that the matrix corresponding to
multipoint multivariate polynomial evaluation has small
recurrence width. We use this connection to show
a barrier result: if one could design algorithms that
are efficient enough in terms of sparsity of the input,
then we would improve the state-of-the-art results in
multipoint multivariate polynomial evaluation.

All missing details and additional results can be
found in the full version of the paper [16].

2 Technical Overview

For ease of exposition, we start off with an overview
of our techniques for low recurrence width matrices.
We describe the basic recurrence width and a natural
generalization that captures displacement rank with
respect to triangular band matrices. Finally we show
how to adapt these techniques to handle matrices with
more general displacement structure.

As in all algorithms for structured matrices, the
main challenge is in manipulating the alternate com-
pact representation of the matrix directly. Although
the recurrence (1.3) is represented with only O(N) to-
tal values (for a fixed t), the polynomials ai(X) it pro-
duces are large: unlike conventional linear recurrences
on scalars, the total output size of this recurrence is
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quadratic because the polynomial degrees grow linearly
(hence the matrix produced is dense). The first hurdle
we clear is compressing this output using the recurrence
structure (1.3), which lets us characterize the polyno-
mials ai(X) in a simple way and leads to an intuitive
algorithm for transpose multiplication. At its core, the
algorithms exploit the self-similar structure of the re-
currence (1.3). By definition, all the polynomials ai(X)
are generated from a0(X), . . . , at−1(X). But due to
the recurrence structure, the higher-degree polynomials
aN/2(X) through aN−1(X) can be thought of as being
generated from aN/2(X), . . . , aN/2+t−1(X) (and the de-
pendence on these generators is now lower-degree). This
forms the basis of the divide-and-conquer algorithms.

We then consider a natural generalization consist-
ing of recurrences on vectors, where the transitions in-
volve multiplying by polynomial functions of a fixed ma-
trix. We show a reduction to the standard polynomial
case; this allows us to interpret structures such as the
displacement rank equation (1.1), which does not seem
to involve polynomials, as defining a polynomial recur-
rence. This reduction is represented through Krylov
matrices, which appear in independently interesting set-
tings on numerical methods such as the Lanczos eigen-
value algorithm and Wiedemann’s kernel vector algo-
rithm [28, 52]. For the cases we are interested in, these
Krylov matrices themselves turn out to have low recur-
rence width.

Transpose multiplication. We will consider a
more general form of the recurrence (1.3) that allows
some generators to be added at every step. It turns out
that this generalization does not increase the asymptotic
cost of the algorithm but will be necessary to capture
structure such as displacement rank (1.1). Suppose that
the following recurrence holds for all i

(2.4) ai(X) =

min(i,t)∑
j=1

gi,j(X)ai−j(X) +
r−1∑
k=0

ci,kdk(X),

for some fixed generators d0(X), . . . , dr−1(X). Notice
that equation (1.3) is a special case with r = t,
di(X) = ai(X) for 0 ≤ i < t, and ci,k = δik for
0 ≤ i < n, 0 ≤ k < r (i.e. the t initial polynomials
are generators and are never re-added).

Consider the simplified case when r = 1 and
d0(X) = 1, so that the recurrence becomes ai(X) =∑min(i,t)
j=1 gi,j(X)ai−j(X) + ci; this simplification cap-

tures the main difficulties. This can be written as
1 0 0 · · · 0

−g1,1(X) 1 0 · · · 0
−g2,2(X) −g2,1(X) 1 · · · 0

...
...

...
. . .

...
0 0 0 · · · 1




a0(X)
a1(X)
a2(X)

...
aN−1(X)

=


c0
c1
c2
...

cN−1



Let this matrix of recurrence coefficients be G. Notice
that computing ATb is equivalent to computing the
coefficient vector of

∑
b[i]ai(X). By the equation

above, it suffices to compute bTG−1c.
Thus, we convert the main challenge of understand-

ing the structure of the matrix A into that of under-
standing the structure of G−1, which is easier to grasp.
Notice that G is triangular and t-banded. The inverse
of it is also structured9 and has the property that every
submatrix below the diagonal has rank t. Thus we can
partition G−1 into O(logN) structured submatrices; for
any such submatrix G′, we only need to be able to com-
pute b′

T
G′c′ for vectors b′, c′. We provide a more ex-

plicit formula for the entries of G−1 that enables us
to do this. The pre-computation step of our algorithms,
as mentioned in Theorem 1.3, essentially corresponds to
computing a representation of G−1 via generators of its
low-rank submatrices. This is formalized in Section 3.3.
We note that this algorithm automatically induces an
algorithm for Ab with the same time complexity, by the
transposition principle.

Matrix Recurrences, Krylov Efficiency and
Displacement Rank. Equation (1.3) can be thought
of as equipping the vector space FN with a F[X]-module
structure and defining a recurrence on vectors ai =∑
gi,j(X)ai−j . In general, a F[X]-module structure is

defined by the action of X, which can be an arbitrary
linear map. This motivates our most general recurrence:

(2.5) ai =

min(i,t)∑
j=1

gi,j(R)ai−j +
r−1∑
k=0

ci,kdk,

where the row vectors are governed by a matrix recur-
rence. This structure naturally captures polynomial re-
currence structure (1.3) and (2.4) (when R is the shift
matrix, i.e. 1 on the main subdiagonal), low rank matri-
ces (when the recurrence is degenerate, i.e. t = 0), and
displacement rank, which we show next.

Consider a matrix A satisfying equation (1.1) for
lower triangular (t+1)-banded L and R and rank(E) =
r. By the rank condition, each row of E can be expanded
as a linear combination of some r fixed vectors dk,
so the ith row of this equation can be rewritten as∑t
j=0 L[i, i− j]A[i− j, :]−A[i, :]R = E[i, :], or

(2.6)

A[i, :](L[i, i]I−R) =

t∑
j=1

−L[i, i− j]A[i− j, :] +
r−1∑
k=0

ci,kdk.

Notice the similarity to equation (2.4) if A[i, :] is re-
placed with ai(X) and R is X. In fact, we show that

9Inverses of banded matrices are called semiseparable [54].
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the matrix A can be decomposed as
∑r

1 AiKi, where
Ai are matrices of recurrence width t and Ki are Krylov
matrices on R.10 We remark that this form generalizes
the well-known ΣLU representation of Toeplitz-like ma-
trices, which is used in multiplication and inversion al-
gorithms for them [25].

Recurrence (2.5) involves evaluating functions at a
matrix R. Classical ways of computing these matrix
functions use natural decompositions of the matrix, such
as its singular value/eigendecomposition, or Jordan
normal form R = AJA−1. In the full version of the
paper we show that it is possible to compute the Jordan
decomposition quickly for several special subclasses of
the matrices we are interested in, using techniques
involving low-width recurrences [16].

However, (2.5) has more structure and only requires
multiplication by the aforementioned Krylov matrices.
In Section 5.4, we show that the Krylov matrix itself
satisfies a recurrence of type (2.4) of width t. Using our
established results, this gives a single O(t2M(N) logN)
algorithm that unifies the aforementioned subclasses
with Jordan decompositions, and implies all triangular
banded matrices are Krylov efficient.

When R is not banded, the Krylov matrices do
not have low recurrence width, but they can still be
structured. The techniques of Section 5.4 show that
in general, multiplying by a Krylov matrix on R is
can be reduced to a computation on the resolvent of
R. Specifically, it is enough to be able to compute
the rational function bT (I − XR)−1c for any b, c.
This reduction bears similarity to results from control
theory about the Sylvester equation (1.1) implying that
manipulating A can be done through operating on the
resolvents of L and R [50]. In the case of multiplication
by A, it suffices to be able to solve the above resolvent
multiplication problem. In Section 6.1, we show how to
solve it when R is quasiseparable, by using a recursive
low-rank decomposition of I−XR.

3 Problem Definition

3.1 Notation We will use F to denote a field and use
R and C to denote the field of real and complex numbers
respectively.
Polynomials. For polynomials p(X), q(X), s(X) ∈
F[X], we use the notation p(X) ≡ q(X) (mod s(X))
to indicate equivalence modulo s(X), i.e. s(X)|(p(X)−
q(X)), and p(X) = q(X) (mod s(X)) to specify q(X)
as the unique element of p(X)’s equivalence class with
degree less than deg s(X). We use M(N) to denote
the time complexity of multiplying two polynomials
of degree N over the field F (and is known to be

10The ith column of the Krylov matrix on R and x is Rix.

O(N logN log logN) in the worst-case). We will use
Õ(T (N)) to denote O

(
T (N) · (log T (N))O(1)

)
.

Vectors and Indexing. For any integer m ≥ 1, we
will use [m] to denote the set {0, . . . ,m − 1}. Unless
specified otherwise, indices in the paper start from 0.
Vectors are boldset like x and are column vectors unless
specified otherwise. We will denote the ith element in x
by x[i] and the vector between the positions [`, r) : ` ≤ r
by x[` : r]. For any subset T ⊆ [N ], eT denotes the
characteristic vector of T . We will shorten e{i} by ei.
Sometimes a vector b is associated with a polynomial
b(X) and this mapping is always b(X) =

∑
i≥0 b[i]Xi

unless specified otherwise.
Matrices. Matrices will be boldset like M and by
default M ∈ FN×N . We will denote the element in
the ith row and jth column by M[i, j] (M[0, 0] denotes
the ‘top-left’ element of M). M[`1 : r1, `2 : r2] denotes
the sub-matrix {M[i, j]}`1≤i<r1,`2≤j<r2 . In particular
we will use M[i, :] and M[:, j] to denote the ith row
and jth column of M respectively. We will use S to
denote the shift matrix (i.e. S[i, j] = 1 if i = j + 1
and 0 otherwise) and I to denote the identity matrix.
We let cM(X) = det(XI−M) denote the characteristic
polynomial of M. Given a matrix A, we denote its
transpose and inverse (assuming it exists) by AT (so
that AT [i, j] = A[j, i]) and A−1 (so that A ·A−1 = I).
We will denote (AT )−1 by A−T .

Finally, we define the notion of Krylov efficiency
which will be used throughout and addressed in Sec-
tion 5.4.

Definition 3.1. Given a matrix M ∈ FN×N and a
vector y ∈ FN , the Krylov matrix of M generated by
y (denoted by K(M,y)) is the N ×N matrix whose ith
column for 0 ≤ i < N is Mi · y. We say that M is
(α, β)-Krylov efficient if for every y ∈ FN , we have that
K = K(M,y) admits the operations Kx and KTx (for
any x ∈ FN ) with O(β) many operations (with O(α)
pre-processing operations on M).

3.2 Our Problem We address structured matrices
satisfying the following property.

Definition 3.2. A matrix A ∈ FM×N satisfies a R-
recurrence of width (t, r) if its row vectors ai = A[i, :]T

satisfy

(3.7) gi,0(R)ai =

min(t,i)∑
j=1

gi,j(R)ai−j + fi

for some polynomials gi,j(X) ∈ F[X], and the matrix
F ∈ FM×N formed by stacking the fi (as row vectors)
has rank r. We sometimes call the fi error terms and
F the error matrix, reflecting how they modify the base
recurrence.
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Note that R ∈ FN×N and we assume gi,0(R) is
invertible for all i.

The recurrence has degree (d, d̄) if deg(gi,j) ≤ dj +
d̄.

For convenience in describing the algorithms, we
assume that M,N and t are powers of 2 throughout
this paper, since it does not affect the asymptotics.

Remark 3.1. We point out some specific cases of im-
portance, and typical assumptions.

1. For shorthand, we sometimes say the width is t
instead of (t, r) if r ≤ t. In particular, the
basic polynomial recurrence (1.3) has width t. In
Section 5.2, we show that every rank r up to
t has the same complexity for our multiplication
algorithm.

2. When d̄ = 0, we assume that gi,0 = 1 for all i and
omit it from the recurrence equation.

3. The orthogonal polynomial transform in Defini-
tion 1.1 has width (2, 1) and degree (1, 0). More
specifically, R = diag(z0, . . . , zN−1) and F =[

e1 · · · e1

]
. In Section 5.3 we show that a

Krylov matrix K(R,1) can be factored out, leav-
ing behind a matrix satisfying a polynomial recur-
rence (1.3). Thus we think of Definition 1.2 as the
prototypical example of recurrence width.

4. When R is a companion matrix
0 0 · · · 0 m0

1 0 · · · 0 m1

0 1 · · · 0 m2

...
...

. . .
...

...
0 0 · · · 1 mN−1


corresponding to the characteristic polynomial
cR(X) = XN − mN−1X

N−1 − · · · − m0, the re-
currence is equivalent to interpreting ai, fi as the
coefficient vector of a polynomial and following a
polynomial recurrence (mod cR(X)). That is, if

ai(X) =
∑N−1
j=0 ai[j]X

j =
∑N−1
j=0 A[i, j]Xj (and

analogously for fi(X)), then the ai(X) satisfy the
recurrence

(3.8 ) gi,0(X)ai(X) =

min(t,i)∑
j=1

gi,j(X)ai−j(X)

+ fi(X) (mod cR(X))

We sometimes call this a modular recurrence.

As an even more special case, the basic polyno-
mial recurrence (1.3) can be considered an instance
of (3.7) with R = S, the shift matrix.

5. If t = 0, then the recurrence is degenerate and
A = F. In other words, low rank matrices are
degenerate recurrence width matrices.

A matrix defined by Definition 3.2 can be compactly
represented as follows. Let G ∈ F[X]M×M be given by
Gii = gi,0(X) and Gij = −gi,i−j(X) (thus, G is zero
outside of the main diagonal and t subdiagonals). Let
F ∈ FM×N be the matrix formed by stacking the fi
(as row vectors). Then G,F, and R fully specify the
recurrence and we sometimes refer to A as a (G,F,R)-
recurrence matrix.

3.3 The Structure Lemma In this section, we
provide a characterization of the elements ai generated
by the recurrence in terms of its parameterization
G,F,R. We further provide a characterization of the
entries of this matrix. We assume for now that we are
working with a recurrence of degree (1, 0).

Lemma 3.1. (Structure Lemma, (i)) Let
H = (hi,j(X))i,j = G−1 (mod cR(X)) ∈ F[X]M×M .
Then

ai =

M−1∑
j=0

hi,j(R)fj

Proof. Recall that gi,0(R) is invertible, so gi,0(X)
shares no roots with cR(X). Thus G−1 (mod cR(X))
is well-defined, since G is triangular and its diagonal
elements are invertible (mod cR(X)).

Given a matrix M = (mij(X))i,j , let M(R) denote
element-wise evaluation: M(R) = (mij(R)). Note that
Definition 3.2 is equivalent to the equation

G(R)

 a0

...
aM−1

 =

 f0
...

fM−1

 .
However, H(R)G(R) = (HG)(R) = I by the Cayley-
Hamilton Theorem. This implies a0

...
aM−1

 = H(R)

 f0
...

fM−1

 .
Our algorithms involve a pre-processing step that

computes a compact representation of H. We use the
following characterization of the elements of H.
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First, for any 0 ≤ i < M , we will define the t × t
transition matrix:

Ti =


0 1 · · · 0
...

... · · ·
...

0 0 · · · 1
gi+1,t(X) gi+1,t−1(X) · · · gi+1,1(X)


(let gi,j(X) = 0 for j > i). And for any ` ≤ r, define
T[`:r] = Tr−1 × · · · ×T` (note that T[`:`] = It).

Lemma 3.2. (Structure Lemma, (ii)) hi,j(X) is
the bottom right element of T[j:i] (mod cR(X)).

Intuitively, Ti describes, using the recurrence, how
to compute ai+1 in terms of ai−t+1, . . . ,ai, and the
ranged transition T[j:i] describes the dependence of ai
on aj−t+1, . . . ,aj . The following lemma about the sizes
of entries in T[`:r] will help bound the cost of computing
them.

Lemma 3.3. Let the recurrence in (3.7) have degree
(1, 0). Then for any 0 ≤ ` ≤ r < N and 0 ≤ i, j < t,

deg(T[`:r][i, j]) ≤ max((r − `+ i− j), 0).

In particular, it is helpful to keep in mind that H
satisfies the same degree condition as G: deg(H[i, j]) ≤
max(i − j, 0). Statements of Lemmas 3.2 and 3.1 for
general (d, d̄)-degree recurrences, and their proofs (as
well as the proof of Lemma 3.3), are presented in the
full version of the paper [16].

4 Core Multiplication Algorithm

We provide an algorithm for computing ATb for a sim-
plified setting that contains all the core ideas. Assume
A ∈ FN×N is a modular recurrence of width (t, 1) and
degree (1, 0). In other words, A is square with three
independent simplifications on its generators: G has
degree (1, 0), F has rank 1, and R is a companion ma-
trix.11 We can express this as

(4.9) ai(X) =

min(t,i)∑
j=1

gi,j(X)ai−j(X) + c[i]d(X)

(mod cR(X))

for some c ∈ FN , d(X) ∈ F[X], deg(gi,j) ≤ j and
recall cR(X) is the characteristic polynomial of R.

11These assumptions are already more general than the setting
in Driscoll et al. [18]; their setting corresponds to t = 2, R = S,
c = e0, d(X) = 1 and cR(X) = XN .

In this context, Lemma 3.1 states that ai(X) =∑N−1
j=0 hi,j(X) · c[j]d(X) (mod cR(X)). Therefore the

desired vector ATb is the coefficient vector of

(4.10)

N−1∑
i=0

b[i]ai(X) =

N−1∑
i=0

N−1∑
j=0

b[i]hi,j(X) · c[j]d(X)

= bTHc · d(X) (mod cR(X))

So it suffices to compute bTHc, and perform the
multiplication by d(X) (mod cR(X)) at the end. By
the Lemma 3.2, bTHc is the bottom right element of
the following t× t matrix:∑

0≤j≤i<N

b[i]T[j:i]c[j] =
∑

j≤i<N
2

b[i]T[j:i]c[j]+

∑
i≥N

2

b[i]T[ N2 :i]

∑
j<N

2

T[j: N2 ]c[j] +
∑

N
2 ≤j≤i

b[i]T[j:i]c[j]

The first and third sums have the same form
as the original. Recursively applying this decom-
position, we see that it suffices to compute the
last row of

∑
i∈[`:r] b[i]T[`:i] and the last column of∑

j∈[`:r] c[j]T[j:r] for all dyadic intervals [` : r] =[
b

2dN : b+1
2d N

]
. By symmetry, we can focus only on

the former. Denoting this row vector (i.e. 1 × t ma-
trix) P`,r =

∑
i∈[`:r] BiT[`:i] (where Bi = b[i]eTt−1 =[

0 · · · b[i]
]
), it satisfies a simple relation P`,r =

P`,m + Pm,rT[`:m] for any ` ≤ m < r, and thus can be
computed with two recursive calls and a matrix-vector
multiply over F[X]t.

Also, note that the T[`:r] are independent of b, so
the relevant products will be pre-computed.

Symmetrically, the t × 1 matrices Q`,r =∑
j∈[`:r] T[j:r]Cj (where Cj = c[j]et−1) satisfy Q`,r =

T[m:r]Q`,m + Qm,r and can be computed in the same
way.

We present the full details in Algorithm 1. The
main subroutine P(`, r) computes P`,r. Subroutine
H(`, r) computes

∑
`≤j≤i<r B[i]T[j:i]C[j]. We omit the

procedure Q computing Q`,r =
∑
j∈[`:r] T[j:r]Cj , which

is identical to procedure P up to a transformation of the
indexing.

4.1 Pre-processing time The pre-processing step is
computing a compact representation of H, which we
represent through the matrices T[bN/2d:bN/2d+N/2d+1] ∈
F[X]t×t for 0 ≤ d < m, 0 ≤ b < 2d. Since we have
assumed that N is a power of 2, these ranges can be
expressed in terms of dyadic strings; we need to pre-
compute T[s] for all strings s ∈ {0, 1}∗, |s|≤ lgN (where
we interpret [s] as the corresponding dyadic interval in
[0, N − 1]). All the required matrices can be computed
in a natural bottom-up fashion:
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Algorithm 1 TransposeMult

Input: G,b, c,T[`:r] for all dyadic intervals: [` : r] =[
b

2dN : b+1
2d N

]
, d ∈ [m], b ∈

[
2d
]

Output: bTHc
1: function P(b, `, r)
2: If r − ` ≤ t then
3: P`,r ←

∑
i∈[`:r] BiT[`:i]

4: else
5: m← (`+ r)/2
6: P`,r ← P(b, `,m) + P(b,m, r)T[`:m]

7: Return P`,r

8: function H(`, r)
9: If r − ` ≤ t then

10: Return
∑
`≤j≤i<r B[i]T[j:i]C[j]

11: else
12: m← (`+ r)/2
13: Return H(`,m) + P`,mQm,r + H(m, r)

14: function TransposeMult(b, c)
15: P(b, 0, N)
16: Q(c, 0, N)
17: Return H(0, N)

Lemma 4.1. We can pre-compute T[s] for all strings
s ∈ {0, 1}∗, |s|≤ lgN with O(tωM(N) logN) opera-
tions.

Proof. Fix an arbitrary s∗ of length ` < lgN . We can
compute T[s∗] = T[s∗0] ·T[s∗1]. Using the matrix multi-
plication algorithm, we have O(tω) polynomial multipli-
cations to compute, where the polynomials are of degree
at most N

2` + t by Lemma 3.3. So computing T[s∗] takes

O(tωM(N/2`+ t)) operations. Thus computing T[s] for

all |s|= ` is O(tωM(N + t2`)), and computing all T[s]

is O(tωM(N) logN), as desired.12

Corollary 4.1. Pre-processing for Algorithm 1 re-
quires O(tωM(N) logN) operations over F.

4.2 Runtime analysis Assuming that the pre-
processing step is already done, the runtime of Algo-
rithm 1 can be bounded with a straightforward recur-
sive analysis (which can be found in the full version of
the paper [16]).

Lemma 4.2. After pre-processing, Algorithm 1 needs
O(t2M(N) logN) operations over F.

We remark that the input vectors b and the er-
ror coefficients c are duals in a sense: they affect Al-
gorithm 1 symmetrically and independently (through

12In the last estimate we note that |s∗|≤ log2(t + 1), so the
tω+12` term only gets added up to ` = log(N/t).

the computations of P`,r and Q`,r respectively). The
main difference is that c affects the pre-processing steps
and b affects the main runtime. We will make use of
this observation later in Section 5.2 which generalizes
c from vectors to matrices. The same generalization
works for b and corresponds to matrix-matrix multipli-
cation ATB [16].

Corollary 4.1 and Lemma 4.2 imply the following
result:

Theorem 4.1. For any matrix A satisfying a modu-
lar recurrence (3.8) of width (t, 1) and degree (1, 0),
with O(tωM(N) logN) pre-processing operations, the
product ATb can be computed for any b with
O(t2M(N) logN) operations over F.

5 The General Recurrence and Related
Operations

In Section 4, we introduced a multiplication algorithm
for matrices A satisfying a (G,F,R)-recurrence (see
Definition 3.2) with simplified assumptions on G,F,R.
In this section, we first finish the details of the matrix-
vector multiplication algorithm for matrices satisfying
the general recurrence. Then we cover several opera-
tions that are simple consequences or extensions of the
algorithm, such as the case when A is rectangular.

There are three modifications to recurrence (4.9)
needed to recover the general case (3.7). First, we gen-
eralize from degree-(1, 0) to degree-(d, d̄) recurrences.
Second, we generalize the error matrix F from rank 1
to rank r. Finally, we relax the constraint that R is a
companion matrix.

5.1 General G First, it is easy to see that if G sat-
isfies a degree (d, 0) recurrence, the companion matri-
ces Ti can still be defined and the degree bounds in
Lemma 3.3 are scaled by d. Since polynomials involved
have degrees scaled by d, the cost of Algorithm 1 in-
creases by a factor of d.13

Next, consider a matrix G for a (d, d̄)-recurrence
(i.e. G lower triangular banded, deg(G[i, j]) ≤ d(i −
j) + d̄). By multiplying G on the left and right
by suitable diagonal matrices (which depend on the
gi,0(X)’s), it can be converted into a matrix G′ satisfy-
ing deg(G′[i, j]) ≤ (d+ d̄)(i− j), i.e. corresponding to a
(d+ d̄, 0)-recurrence. The details of this transformation
are shown in the full version of the paper [16].

Therefore algorithms for a (d, d̄)-recurrence have
runtimes scaled by a factor of (d+ d̄). This generaliza-

13The runtime is actually slightly better because the degrees
don’t grow beyond N (due to the modulus). The logN factor can
be replaced by logN − log d, but the asymptotics are the same
since we usually assume d is fixed.
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tion is also independent of the other generalizations - the
algorithm does not change, only the operation count.
We henceforth assume again that (d, d̄) = (1, 0) for sim-
plicity.

5.2 General F Now consider a modular recurrence
of width (t, r). As usual convert the vectors to polyno-

mials; write F = CD and let di(X) =
∑N−1
j=0 D[i, j]Xj .

By a small modification of the derivation in Section 4,
we deduce that the desired quantity ATb is the coeffi-
cient vector of the polynomial

bTHC ·

 d0(X)
...

dr−1(X)

 (mod cR(X))

(compare to equation (4.10) in the case r = 1). Again
the multiplications by d0(X), . . . , dr−1(X) can be post-
poned to the end and incur a cost of rM(N) operations,
so we focus on computing bTHC (mod cR(X)). Recall
that b ∈ FN ,H ∈ F[X]N×N ,C ∈ FN×r. We can still
apply Algorithm 1 directly. Procedure P still computes
P`,s =

∑s−1
` BiT[`:i], but procedure Q now computes

Q`,s =
∑s−1
` T[i:s]Ci where

Ci =

 0 · · · 0
...

. . .
...

C[i, 0] · · · C[i, s− 1]

 ,
with the only difference being that it now has dimen-
sions t× r instead of t× 1.

We analyze the change in runtime compared to
Lemma 4.2. The call to P does not change; its
complexity is still O(t2M(N) logN).

In procedure Q, the change is that the recursive
computation Q`,r = T[m:r]Q`,m + Qm,r is now a
multiplication of a t × t and t × r matrix instead of
t × t by t × 1. The runtime coefficient changes from t2

to αt,r, where αt,r is the cost of performing a t × t by
t × r matrix multiplication. Also note that since this
does not depend on b, this can be counted as part of
the pre-processing step. The total pre-processing step
is now O ((tω + αt,r)M(N) logN).

In procedure H, we are now performing a 1 × t by
t × r multiplication. The runtime of H(0, N) is now
O(trM(N) logN). The total runtime (the calls to P
and H) is O(t(t+ r)M(N) logN).

Finally, we note that αt,t = tω, and in general
αt,r ≤ min(rt2, (1 + r/t)tω). For large enough r we use
the latter bound, whence the pre-processing coefficient
O(tω + αt,r) above becomes O((t+ r)tω−1).

In particular, the pre-processing time is
still O(tωM(N) logN) and the runtime is still

O(t2M(N) logN) when r = O(t). This fully cap-
tures the original polynomial recurrence (1.3), and in
particular the orthogonal polynomial transforms [18].

5.3 General R Aside from the reason that it is nec-
essary to handle the displacement rank recurrence (2.6),
we provide an intrinsic reason for considering the gen-
eral matrix-recurrence (3.7), as a natural continuation
of polynomial recurrences (1.3). Equation (1.3) is writ-
ten in terms of polynomials, but it is defining vectors.
Another way of writing it is as follows: we are actually
defining a recurrence on vectors ai (the rows of A) sat-
isfying ai =

∑
gij(X) ·ai−j , where the bilinear operator

(· : F[X]×FN → FN ) is defined for g(X)·a by converting
a to a polynomial, multiplying by g(X) (mod cR(X)),
and converting back to a vector. This is just an instance
of equipping the vector space FN with a F[X]-module
structure. Thus it is natural to consider what happens
in general when we define ai =

∑
gij(X) · ai−j for any

F[X]-module structure on V = FN . In general, this is
uniquely defined by the action of X; this is a linear map
on V , hence equivalent to multiplication by a matrix R.
This leads to the matrix recurrence (3.7).

By Lemma 3.1, ai =
∑N−1
j=0 hi,j(R)fj , which can be

simplified:

ai =
N−1∑
j=0

hi,j(R)

(
r−1∑
k=0

cjkdk

)

=
N−1∑
j=0

r−1∑
k=0

cjkhi,j(R)dk

=
N−1∑
j=0

r−1∑
k=0

cjk

(
N−1∑
`=0

hi,j [`]R
`

)
dk

=
N−1∑
j=0

r−1∑
k=0

cjk(K(R,dk)hij),

where hij is the coefficient vector of hi,j(X).
Thus the desired answer to ATb is
N−1∑
i=0

b[i]ai =

N−1∑
i=0

N−1∑
j=0

r−1∑
k=0

b[i]cjkK(R,dk)hij

=

r−1∑
k=0

K(R,dk)

N−1∑
i=0

N−1∑
j=0

b[i]cjkhij(5.11)

Finally, recall that bTHC is a 1 × r vector of poly-
nomials, and

∑N−1
i=0

∑N−1
j=0 b[i]cjkhij is the coefficient

array of its kth entry. Thus we compute bTHC as be-
fore, and then perform r matrix-vector multiplications
by the Krylov matrices K(R,dk).

With fully general G,F,R, we get the following
matrix-vector multiplication runtime.
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Theorem 5.1. If A ∈ FN×N is a matrix satisfying a
R-matrix recurrence (3.7) (with known characteristic
polynomial cR(X)) of width (t, r) and degree (d, d̄), and
R is (α, β)-Krylov efficient, then with O((d+ d̄)tω−1(t+
r)M(N) logN + α) pre-processing, the products ATb
and Ab for any vector b can be computed with O((d+
d̄)t(t+ r)M(N) logN + rβ) operations.

We also note that for the case of rectangular matri-
ces A ∈ FM×N , Algorithm 1 and the modifications in
this section still apply. The runtime is easy to analyze;
the sizes of the pre-processing and recursion parameters
(e.g. degree of polynomials in T[`:r]) depend on M , and
the sizes of the post-recursion steps (e.g. multiplication
by Krylov matrices) depend on N [16].

5.4 Krylov Efficiency In Section 5.3, we showed
how to factor matrix recurrences into the product of a
polynomial/modular recurrence and a Krylov matrix,
thus reducing the runtime of a R-matrix recurrence
to the Krylov efficiency (Definition 3.1) of R. In this
section we show Krylov efficiency for a particular class
of matrices that is necessary to prove Theorem 1.1.

We note that a natural approach to Krylov effi-
ciency is utilizing the Jordan normal form. In the full
version of the paper [16], we show how knowing the
Jordan form M = AJA−1 implies a particularly sim-
ple algorithm for Krylov efficiency, and provide cases
for which we can compute this Jordan decomposition
efficiently.

However, this reduction is clearly one way– finding a
Jordan decomposition is stronger than Krylov efficiency,
but the latter problem has more structure that we can
take advantage of. Now we will show that the class
of banded triangular matrices are Krylov efficient by
showing that the Krylov matrix itself has low recurrence
width (equal to the bandwidth).

We remark that the Krylov efficiency concept does
not apply only to our problem. If K is the Krylov
matrix on A and b, then Kb =

∑
b[i]Aix is naturally

related to contexts involving Krylov subspaces, matrix
polynomials, and so on. The product KTb = [b · x,b ·
Ax,b · A2x, . . . ] is also useful; it is the first step in
the Wiedemann algorithm for computing the minimal
polynomial or kernel vectors of a matrix A [28].

5.4.1 Krylov Efficiency of triangular banded
matrices Let M be a lower triangular (∆ + 1)-band
matrix, i.e. all values other than M[i, `] for i−∆ ≤ ` ≤ i
are zero. Let y be an arbitrary vector and let K denote
the Krylov matrix of M with respect to y.

We will show that K satisfies a modular recurrence
of width (∆, 1). The same results also hold for upper
triangular matrices.

Define polynomials fi(X) =
∑N−1
j=0 K[i, j] ·Xj and

let F =

 f0(X)
...

fN−1(X)

. We can alternatively express it as

F =

N−1∑
j=0

K[:, j]Xj =

N−1∑
j=0

(Mjy)Xj =

N−1∑
j=0

(MX)j

y.

Multiplying by I−MX, we get the equation

(5.12) (I−MX)F = y − (MX)Ny

Therefore it is true that

(5.13) (I−MX)F ≡ y (mod XN )

and furthermore, F can be defined as the unique so-
lution of equation (5.13) because I −MX is invertible
in F[X]/(XN ) (since it is triangular and its diagonal is
comprised of invertible elements (1−M[i, i]X)).

But equation (5.13) exactly defines a modular re-
currence (3.8) of degree (0, 1) and width (∆, 1). Theo-
rem 5.1 implies

Theorem 5.2. Any triangular ∆-band matrix is
(∆ωM(N) logN,∆2M(N) logN)-Krylov efficient.

6 Displacement Rank

Recall that the displacement rank of a matrix A with
respect to matrices L,R is defined as the rank of the
error matrix

E = LA−AR.

The concept of displacement rank has been used to
generalize and unify common structured matrices such
as Hankel, Toeplitz, Vandermonde, and Cauchy ma-
trices; these matrices all have low displacement ranks
with respect to diagonal or shift matrices being L and
R. Olshevsky and Shokrollahi [42] defined the con-
fluent Cauchy-like matrices to be the class of matri-
ces with low displacement rank with respect to Jordan
form matrices; this class of matrices generalized and uni-
fied the previously mentioned common structured ma-
trices. Our class of structured matrices extends the re-
sults of [42] to a more general form for L and R while
matching the complexity bound in their setting.

As usual in the displacement rank approach, we
wish to work with a matrix A defined by a compressed
displacement representation. We consider square ma-
trices for simplicity, although the techniques work for
rectangular matrices as well [16]. Definition 6.1 formally
lays out the representation of A.

Definition 6.1. Suppose we are given the following:
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• R ∈ FN×N that is (α, β)-Krylov efficient and such
that we know its characteristic polynomial cR(X),

• L ∈ FN×N that is triangular (throughout this
section, we will assume it is lower triangular) and
(∆ + 1)-band,

• C ∈ FN×r and D ∈ Fr×N , generators for a low
rank matrix

• a displacement operator DL,R ∈ {∇L,R,∆L,R}.
The Sylvester operator is defined as ∇L,R : A 7→
LA −AR, and the Stein operator is ∆L,R : A 7→
A− LAR.

Assume that A ∈ FN×N is implicitly and uniquely
defined by the equation DL,R(A) = CD.14

Suppose that A is defined according to a Sylvester
displacement equation; the Stein displacement case is
very similar [16]. We will show that the rows of A
satisfy a standard R-matrix recurrence as in (3.7).
Let d0, . . . ,dr−1 ∈ FN be the rows of D (vectorized
as a column vector), so that every row of DL,R(A)
(vectorized) can be written as a linear combination of
the basis d0, . . . ,dr−1.

As in equation (2.6), expanding and rearranging the
ith row of LA−AR = E yields

A[i, :](L[i, i]I−R) =
t∑

j=1

−L[i, i−j]A[i−j, :]+
r−1∑
k=0

ci,kdk.

By Definition 3.2, this exactly defines a RT -matrix
recurrence of width (t, r) and degree (0, 1). Note that
the disjoint eigenvalue assumption means L[i, i]I−R is
invertible for all i. In this case gi,0(X) = L[i, i]−X and
gi,j(X) = −L[i, i− j].

Theorem 5.1 gives the complexity of superfast
matrix-vector multiplication by A and AT in terms of
the Krylov efficiency of R. Furthermore, when R is
also triangular and ∆-band, its characteristic polyno-
mial can be computed in O(M(N) logN) time and it
is (∆ωM(N) logN,∆2M(N) logN)-Krylov efficient by
Theorem 5.2.

Again, we stated the reduction for lower triangular
matrices, but upper triangular L defines a similar
recurrence. Finally, it is known that AT also has low
displacement rank, with respect to RT and LT , so the
same reduction and algorithm works for AT .

The above discussion and applying Theorem 5.1
implies

14E.g. In the Sylvester case, the last condition is equivalent to
L and R not sharing eigenvalues. [50].

Theorem 6.1. Suppose we are given L,R,C,D that
define a matrix A according to Definition 6.1. Then
we can compute Ab and ATb for any vector b
in O((∆ + r)∆M(N) logN + rβ) operations with
O(α∆,rM(N) logN + α) preprocessing.

Corollary 6.1. Suppose we are given L,R,C,D that
define a matrix A according to Definition 6.1, and
additionally suppose that L and R are both ∆-band.
Then we can compute Ab and ATb for any vector b
in O(∆2rM(N) logN) operations with O((∆ω−1(∆ +
r))M(N) logN) preprocessing.

This finishes the proof of the first part of Theo-
rem 1.1.

We remark that this captures the previous displace-
ment results in the literature before the very recent re-
sults of Bostan et al. [11]. For the four classic types,
Toeplitz- and Hankel-like matrices are defined with the
Stein operator and L = S, R = ST ; Vandermonde-like
matrices are defined with the Sylvester operator and L
diagonal, R = ST ; and Cauchy-like matrices are defined
with the Sylvester operator and L,R diagonal. Until re-
cently, the most general previous displacement rank re-
sults in literature had L and R in Jordan normal form,
which were handled by Olshovsky and Shokrollahi [42].
The results in this section cover all L and R in Jordan
normal form that have distinct eigenvalues. We note
that it is not possible to have a single efficient algorithm
for matrices with low displacement rank with respect to
arbitrary L,R in Jordan normal form. In particular,
every matrix has low displacement rank with respect to
L = R = I. In general, when L and R share eigen-
values, the equation LA −AR = E does not uniquely
specify A, and we hypothesize that a general algorithm
will incur an extra factor roughly corresponding to the
complexity of fully specifying A.

6.1 Quasiseparable L and R We now show how
to adapt the above to more general L and R, which in
particular includes both the triangular band matrices
of Corollary 6.1 and the block companion matrices
of Bostan et al. [11]. For concreteness, we focus on
the Sylvester displacement LA − AR = CDT , but
the Stein displacement case is similar. Let us trace
through the execution of the full algorithm, paying
special attention to equation (5.11) which we re-write
here for convenience.

ATb =

r−1∑
k=0

K(R,dk)

N−1∑
i=0

N−1∑
j=0

b[i]cjkhij

(where H is from the Structure Lemma 3.1 and hij is
the coefficient vector of Hij ∈ F[X]).
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The full algorithm for computing ATb can be
summarized as follows. Let H = (L − XI)−1

(mod cR(X)) ∈ F[X]N×N . Compute F = bTHC ∈
F[X]1×r. Let fk ∈ FN be the coefficient vector of the kth

element of F. The answer is
∑r−1
k=0K(R,dk)fk. Finally,

to perform the Krylov multiplications, recall that in Sec-
tion 5.4 we showed that K(R,d)T f is the coefficient
vector of the polynomial fT (I − RX)−1d (mod XN )
(analogous to the bTHc step of Algorithm 1). The
multiplication K(R,d)f has the same complexity by the
transposition principle, and an explicit algorithm can be
found by using the same techniques to convert the re-
currence width transpose multiplication algorithm ATb
to the algorithm for Ab [16].

Thus the multiplication ATb can be reduced to
performing O(r) computations of the form bT (XI −
R)−1c (mod M(X)) (or bT (I−RX)−1c (mod M(X)),
but these are algorithmically equivalent, so we focus
on the former) for some M(X) of degree N (note that
M(X) will be equal to either cR(X) or XN ).15 It is
enough to find bT (XI − R)−1c, which is a rational
function of the form f(X)/g(X) - then reducing it
(mod M(X)) requires M(N) logN steps for inverting
g(X) (mod M(X)) [57] and M(N) for multiplying by
f(X) (mod M(X)). We call computing bT (XI−R)−1c
the resolvent problem on R. Henceforth we also let
X −R denote XI−R.

6.1.1 Resolvent computation The most general
useful class of matrices for which we know how to
solve the resolvent problem in soft-linear time are the
quasiseparable matrices, introduced by Eidelman and
Gohberg [19].

Definition 6.2. A matrix R ∈ FN×N is (p, q)-
quasiseparable if

• Every submatrix contained strictly below (above)
the diagonal has rank at most p (q).

A (q, q)-quasiseparable matrix is also called q-
quasiseparable.16

The problem we now address is given t-
quasiseparable R, to compute the rational function
bT (X −R)−1c for any vectors b, c.

15The above reduction from the Sylvester equation to resolvents
is similar to various known formulae for A based on the Sylvester
equation [34,50].

16Given a q-quasiseparable matrix R satisfying Definition 6.2,
we will assume that we have access to a factorization of any rank-
q sub-matrix (or can compute one in time equal to the size of
this factorization, i.e. q(k + `) for a k × ` sub-matrix). There
are many efficient representations of quasiseparable matrices that
allow this [17, 19], and even without one, simple randomized
approaches still allow efficient computation of the generators [27].

The idea here is that quasiseparable matrices are
recursively “self-similar”, in that the leading and trail-
ing principal submatrices are also quasiseparable, which
leads to a divide-and-conquer algorithm. Consider a
quasiseparable matrix R for which we want to com-
pute the resolvent (X − R)−1. The top left and bot-
tom right blocks of X −R are self-similar to X −R it-
self by definition of quasiseparability. Suppose through
recursion we can invert each of them, in other words
compute diag{X − R11, X − R22}. But by quasisep-
arability, X − R is simply a low-rank perturbation of
diag{X−R11, X−R22}, and so by standard techniques
we can compute (X −R)−1 [56]:

Proposition 6.1. (Woodbury matrix identity)
Over a commutative ring R, let A ∈ RN×N and
U,V ∈ RN×p. Suppose A and A + UVT are
invertible. Then Ip + VTA−1U is invertible and

(A+UVT )−1 = A−1−A−1U(Ip+VTA−1U)−1VTA−1

For our purposes, R will be the ring of rational
functions over F. Now we can prove the following.

Lemma 6.1. Let R be a t-quasiseparable matrix. Then
bT (X −R)−1c for any scalar vectors b, c can be com-
puted in O(tωM(N) log2N + t2M(N) log3N) opera-
tions.

Proof. More generally, we will consider computing
BT (X−R)−1C for matrices B ∈ FN×k and C ∈ FN×k.
Note that the result is a k × k matrix of rational func-
tions of degree at most N on top and bottom.

Let R be partitioned into submatrices

R11,R12,R21,R22 ∈ (F(X))
N/2×N/2

in the usual
way. Since R is t-quasiseparable, we can write
R21 = ULVT

L and R12 = UUVT
U where U·,V· ∈ FN×t.

Notice that we can write X −R as[
X −R11 0

0 X −R22

]
+

[
0 UU

UL 0

] [
VL 0
0 VU

]T
.

Suppose we know the expansions of each of

M1 = BT

[
X −R11 0

0 X −R22

]−1

C

M2 = BT

[
X −R11 0

0 X −R22

]−1 [
0 UU

UL 0

]
M3 =

[
VL 0
0 VU

]T [
X −R11 0

0 X −R22

]−1 [
0 UU

UL 0

]
M4 =

[
VL 0
0 VU

]T [
X −R11 0

0 X −R22

]−1

C.

These have dimensions k × k, k × 2t, 2t × 2t, 2t × k
respectively (and entries bounded by degree N/2 on the
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top and bottom). Also note that all the above inverses
exist because a matrix of the form X−R for R ∈ F has
non-zero determinant.

By Proposition 6.1, the desired answer is

BT (X −R)−1C = M1 −M2(I2t + M3)−1M4.

Then the final result can be computed by in-
verting I2t + M3 (O(tωM(N)) operations), multiply-
ing by M2,M4 (O(k/t · tωM(N)) operations each17),
and subtracting from M1 (O(k2M(N)) operations).
This is a total of O((tω + ktω−1 + k2)M(N)) opera-
tions. Note that when k = O(t logN), this becomes
O(tωM(N) logN + t2M(N) log2N); we will use this in
the analysis shortly.

To compute the Mi, it suffices to compute:

BT
1 (X −R11)−1C1 BT

2 (X −R22)−1C2

BT
1 (X −R11)−1UU BT

2 (X −R22)−1UL

VT
L(X −R11)−1UU VT

U (X −R22)−1UL

VT
L(X −R11)−1C1 VT

U (X −R22)−1C2.

But to compute those, it suffices to compute the follow-
ing (k + t)× (k + t) matrices:[

B1 VL

]T
(X −R11)−1

[
C1 UU

][
B2 VU

]T
(X −R22)−1

[
C2 UL

]
Since R11 and R22 have the same form as R, this is two
recursive calls of half the size. Notice that the size of the
other input (dimensions of B,C) is growing, but when
the initial input is k = 1, it never exceeds 1 + t logN
(since they increase by t every time we go down a
level). Earlier, we noticed that when k = O(t logN),
the reduction step has complexity O(tωM(N) logN +
t2M(N) log2N) for any recursive call. As usual, the
complete runtime is a logN multiplicative factor on top
of this.

Combining the aforementioned reduction from the
Sylvester equation to resolvents with this algorithm
proves the multiplication part of Theorem 1.2.

We note that the bounds in Lemma 6.1 are slightly
worse in the exponent of t and the number of logN
factors, compared to the bounds derived from the
recurrence width algorithm as in Corollary 6.1. A more
detailed analysis that isolates operations independent of
b as pre-computations should be possible to bridge the
gap between these bounds, and is left for future work.

17When k < t this term is subsumed by the previous one
anyways

7 Succinct Representations and Multivariate
Polynomials

The goal of this section is two fold. The first goal is
to present matrices that have low recurrence width in
our sense but were not captured by previous notions of
widths of structured matrices. The second goal is to
show that substantially improving upon the efficiency
of our algorithms with respect to sharper notions of
input size will lead to improvements in the state-of-the-
art algorithms for multipoint evaluation of multivariate
polynomials. Our initial interest in these matrices
arose from their connections to coding theory, which
we will also highlight as we deal with the corresponding
matrices.

We consider the following problem.

Definition 7.1. Given an m-variate polynomial
f(X1, . . . , Xm) such that each variable has de-
gree at most d − 1 and N = dm distinct points
x(i) = (x(i)1, . . . , x(i)m) for 1 ≤ i ≤ N , output the
vector (f(x(i)))Ni=1.

The best runtime for an algorithm that solves the
above problem (over an arbitrary field) takes time
O(dω2(m−1)/2+1) [16], where an n × n matrix can be
multiplied with an n × n2 matrix with O(nω2) opera-
tions [29, 38]. We remark on three points. First in the
multipoint evaluation problem we do not assume any
structure on the N points: e.g. if the points form an
m-dimensional grid, then the problem can be solved in
Õ(N) many operations using standard FFT techniques.
Second, if we are fine with solving the problem over fi-
nite fields, then the breakthrough result of Kedlaya and
Umans [29] solves this problem with N1+o(1) operations
(but for arbitrary N evaluation points). In other words,
the problem is not fully solved only if we do not have
any structure in the evaluation points and we want our
algorithms to work over arbitrary fields (or even R or C).
Finally, from a coding theory perspective, this problem
(over finite fields) corresponds to encoding of arbitrary
puncturings of Reed-Muller codes.

While we do not prove any new upper bounds
for these problems, it turns out that the connection
to multipoint evaluation of multivariate polynomials
has some interesting complexity implications for our
result. In particular, recall that the worst-case input
size of a matrix with recurrence width t is Θ(t2N) and
our algorithms are optimal with respect to this input
measure (assuming ω = 2). However, it is natural to
wonder if one can have faster algorithms with respect
to a more per-instance input size.

Next, we aim to show that if we can improve our
algorithms in certain settings then it would imply a fast
multipoint evaluation of multivariate polynomials. In
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particular, we consider the following two more succinct
ways of representing the input. For a given polynomial
f(X) ∈ F[X], let ‖f‖0 denote the size of the support of
f . Finally, consider a matrix A defined by a recurrence
in (3.7). Define

‖A‖0=
N−1∑
i=0

t∑
j=0

‖gi,j‖0+rN,

i.e. the size of sum of the sizes of supports of gi,j ’s plus
the size of the rank r-representation of the error matrix
in (3.7).

The second more succinct representation where we
have an extra bound that ‖gi,j‖≤ D (for potentially
D < t) for the recurrence in (3.7). Then note that
the corresponding matrix A can be represented with
size Θ(tDN + rN) elements. In this case, we will
explore if one can improve upon the dependence on r
in Theorem 5.1.

We would like to point out that in all of the above
the way we argue that the error matrix E has rank
at most r is by showing it has at most r non-zero
columns. Thus, for our reductions rN is also an upper
bound on ‖E‖0, so there is no hope of getting improved
results in terms of the sparsity of the error matrix
instead of its rank without improving upon the state-of-
the-art results in multipoint evaluation of multivariate
polynomials.

7.1 Multipoint evaluation of bivariate polyno-
mials We begin with the bivariate case (i.e. m = 2)
since that is enough to connect improvements over our
results to improving the state-of-the-art results in mul-
tipoint evaluation of bivariate polynomials.

For notational simplicity we assume that the poly-
nomial is f(X,Y ) =

∑d−1
i=0

∑d−1
j=0 fi,jX

iY j and the eval-
uation points are (x1, y1), . . . , (xN , yN ). Now consider
the N ×N matrix in (7.14).

Note that to solve the multipoint evaluation prob-
lem we just need to solve A(2) · f , where f contains
the coefficients of f(X,Y ). Let DX and DY denote
the diagonal matrices with x = (x1, . . . , xN ) and y =
(y1, . . . , yN ) on their diagonals respectively. Finally, de-
fine Z = ST . Now consider the matrix

B(2) = D−1
X A(2) −A(2)Z.

It can be checked that B(2) has rank at most d. Indeed
note that B(2) has the structure as in (7.15).

The above was already noticed in [41]. The above
is not quite enough to argue what we want so we make

the following stronger observation. Consider

(7.16)
C(2) = D−1

Y B(2) −B(2)Zd

= D−1
Y D−1

X A(2) −D−1
Y A(2)Z

−D−1
X A(2)Zd + A(2)Zd+1.

One can re-write the above recurrence as follows (where

ai =
(
A(2)[i, :]

)T
and recall Z = ST ) for any 0 ≤ i < N :(

1

xiyi
− S

yi
− Sd

xi
+ Sd+1

)
· ai =

(
C(2)[i, :]

)T
.

We now claim that the rank of C(2) is at most two.
Indeed, note that C(2) has structure as in (7.17).

Thus, we have a recurrence with recurrence width
(1, 2) and degree (D, 1). Theorem 5.1 implies that we
can solve the above problem with Õ(d3) operations.
The algorithm of [38] uses Õ(dω2/2+1) many operations.
However, note that

‖A(2)‖0= Θ(d2).

Thus, we have the following result:

Theorem 7.1. If one can solve Ab for any b with

Õ
(

(‖A‖0)
ω2/4+1/2−ε

)
operations, then one will have

an multipoint evaluation of bivariate polynomials with
Õ(dω2/2+1−2ε) operations, which would improve upon
the currently best-known algorithm for the latter.

7.2 Multipoint evaluation of multivariate poly-
nomials We now consider the general multivariate
polynomial case. Note that we can represent the
multipoint evaluation of the m-variate polynomial
f(X1, . . . , Xm) as A(m)f , where f is the vector of co-
efficients and A(m) is presented as follows.

Each of the dm columns are indexed by tuples
i ∈ Zmd and the columns are sorted in lexicographic
increasing order of the indices. The column i =
(i1, . . . , im) ∈ Zmd is represented by

A(m)[:, i] =


∏m
j=1 x(1)

ij
j∏m

j=1 x(2)
ij
j

...∏m
j=1 x(N)

ij
j

 ,

where the evaluation points are given by x(1), . . . ,x(N).
For notational simplicity, we will assume that m is

even. (The arguments below can be easily modified for
odd m.) Define recursively for 0 ≤ j ≤ m/2:

(7.18) B(j) = D−1
Xm−j

B(j+1) −B(j+1)Zd
j

,
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(7.14)

A(2) =


1 x1 · · · xd−1

1 y1 y1x1 · · · y1x
d−1
1 y2

1 · · · y2
1x
d−1
1 · · · yd−1

1 · · · yd−1
1 xd−1

1

1 x2 · · · xd−1
2 y2 y2x2 · · · y2x

d−1
2 y2

2 · · · y2
2x
d−1
2 · · · yd−1

2 · · · yd−1
2 xd−1

2
...

...

1 xN · · · xd−1
N yN yNxN · · · yNx

d−1
N y2

N · · · y2
Nx

d−1
N · · · yd−1

N · · · yd−1
N xd−1

N

 .

(7.15)

B(2) =



1
x1

0 · · · 0 y1
x1
− xd−1

1 0 · · · 0 y1

(
y1
x1
− xd−1

1

)
0 · · · 0 · · · yd−2

1

(
y1
x1
− xd−1

1

)
0 · · · 0

1
x2

0 · · · 0 y2
x2
− xd−1

2 0 · · · 0 y2

(
y2
x2
− xd−1

2

)
0 · · · 0 · · · yd−2

2

(
y2
x2
− xd−1

2

)
0 · · · 0

...
...

1
xN

0 · · · 0 yN
xN
− xd−1

N 0 · · · 0 yN

(
yN
xN
− xd−1

N

)
0 · · · 0 · · · yd−2

N

(
yN
xN
− xd−1

N

)
0 · · · 0

 .

(7.17) C(2) =


1

x1y1
0 · · · 0

−xd−1
1

y1
0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0

1
x2y2

0 · · · 0
−xd−1

2

y2
0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0

...
...

1
xNyN

0 · · · 0
−xd−1

N

yN
0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0

 .

where DXk
is the diagonal matrix with

(x(1)k, . . . , x(N)k) on its diagonal. Finally, for
the base case we have

B( m
2 +1) = A(m).

It can be verified (e.g. by induction) that the
recurrence in (7.18) can be expanded out to

(7.19)

B(0) =
∑

S⊆[m/2,m]

(−1)m/2+1−|S|

∏
j∈S

D−1
Xj

A(m)

 ∏
j∈[m/2,m]\S

Zd
m−j

 .

The above can be re-written as (where fi =(
A(m)[i, :]

)T
):

(
B(0)[i, :]

)T
=

 ∑
S⊆[m/2,m]

(−1)m/2+1−|S|

· 1∏
j∈S x(i)j

 ∏
j∈[m/2,m]\S

Sd
m−j

 · fi.
We argue in the full version of the paper [16] that

Lemma 7.1. B(0) has rank at most 2m/2 · dm/2−1.

Note that the above lemma implies that the re-
currence in (7.19) is a S-matrix recurrence with re-
currence width (1, r = 2m/2dm/2−1) and degree (D =
d1+m/2−1

d−1 , 1). Note that in this case we have tDN+rN =

Θ((2d)3m/2−1). Thus, we have the following result:

Theorem 7.2. If for an S-dependent recurrence we
could improve the algorithm from Theorem 5.1 to run
with Õ(poly(t) · DN + rN) operations for matrix vec-
tor multiplication, then we would be able to solve the
general multipoint evaluation of multivariate polynomi-
als in time Õ((2d)3m/2−1), which would be a polyno-
mial improvement over the current best algorithm (when
d = ω(1)), where currently we still have ω2 > 3.

Note that the above shows that improving the de-
pendence in r in Theorem 5.1 significantly (even to
the extent of having some dependence on Dr) will im-
prove upon the current best-known algorithms (unless
ω2 = 3).

Finally, in the full version of the paper [16], we
present one more example of matrices that have been
studied in coding theory that satisfy our general notion
of recurrence. These matrices encode multipoint evalu-
ation of multivariate polynomials and their derivatives
and correspond to (puncturing of) multivariate multi-
plicity codes, which have been studied recently [31–33].
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However, currently this does not yield any conditional
“lower bounds” along the lines of Theorem 7.1 or 7.2.

8 Related Work

Superfast structured matrix-vector multiplication has
been a rich area of research. Popular classes of struc-
tured matrices such as Toeplitz, Hankel, and Vander-
monde matrices and their inverses all have classical
superfast multiplication algorithms that correspond to
operations on polynomials [6, 8]. The four classes of
matrices are all subsumed by the notion of displace-
ment rank introduced by Kailath, Kung, and Morf in
1979 [25] (also see [21] and [23]). Kailath et al. ini-
tially used displacement rank to define Toeplitz-like ma-
trices, generalizing Toeplitz matrices. Then Morf [37]
and Bitmead and Anderson [9] developed a fast divide-
and-conquer approach for solving a Toeplitz-like linear
system of equations in quasilinear time, now known as
the MBA algorithm. This was extended to Hankel and
Vandermonde-like matrices in [43]. In 1994, Gohberg
and Olshevsky further used displacement rank to define
Vandermonde-like, Hankel-like, and Cauchy-like matri-
ces and developed superfast algorithms for vector multi-
plication [22]. In 1998, Olshevsky and Pan extended the
MBA algorithm to superfast inversion, in a unified way,
of these four main classes of displacement structured
matrices [40]. These matrix classes were unified and
generalized by Olshevsky and Shokrollahi in 2000 [42]
with a class of matrices they named confluent Cauchy-
like, which have low displacement rank with respect to
Jordan form matrices. In this work, we extend these
results by investigating matrices with low displacement
rank with respect to any triangular t-band matrices,
which we define to be matrices whose non-zero elements
all appear in t consecutive diagonals. General and uni-
fied algorithms for the most popular classes of matri-
ces with displacement structure have continued to be
refined for practicality and precision, such as in [24]
and [46].

A second strand of research that inspired our work
is the study of orthogonal polynomial transforms, espe-
cially that of Driscoll, Healy, and Rockmore [18]. Or-
thogonal polynomials are widely used and well worth
studying in their own right: for an introduction to the
area, see the classic book of Chihara [15]. We present
applications for some specific orthogonal polynomials.
Chebyshev polynomials are used for numerical stability
(see e.g. the ChebFun package [5]) as well as approxi-
mation theory (see e.g. Chebyshev approximation [1]).
Jacobi polynomials form solutions of certain differen-
tial equations [2]. Zernike polynomials have applica-
tions in optics and physics [3]. In fact, our investigation
into structured matrix-vector multiplication problems

started with some applied work on Zernike polynomials,
and our results applied to fast Zernike transforms have
been used in improved cancer imaging [58]. Driscoll
et al. rely heavily on the three-term recurrence satis-
fied by orthogonal polynomials to devise a divide-and-
conquer algorithm for computing matrix-vector multi-
plication. One main result of this work is a direct gen-
eralization of the recurrence, and we rely heavily on
the recurrence to formulate our own divide and con-
quer algorithm. The basic algorithm in Section 4 is
modeled after previous works on orthogonal polynomi-
als [12,18,49], which are themselves reminiscent of clas-
sic recursive doubling techniques such as that proposed
by Kogge and Stone [30].

A third significant strand of research is the study of
rank-structured matrices. The most well-known exam-
ple is the class of semiseparable matrices, for which we
refer to an extensive survey by Vandebril, Van Barel,
Golub, and Mastronardi [53] for a detailed overview of
the body of work. Many variants and generalizations
exist including the generator representable semisepara-
ble matrices, sequentially separable mentions, and qua-
siseparable matrices, which all share the defining fea-
ture of certain sub-matrices (such as those contained
above or below the diagonal) being low rank [20, 55].
These types of matrices turn out to be highly useful
for devising fast practical solutions of certain struc-
tured systems of equations. Quasiseparable matrices
in particular, which appear in our Theorem 1.2, are
actively being researched with recent fast representa-
tions and algorithms in [47, 48]. Just as how the four
main displacement structures are closely tied to polyno-
mial operations [44], the work of Bella, Eidelman, Go-
hberg, and Olshevsky show deep connections between
computations with rank-structured matrices and with
polynomials [7]. Indeed at this point connections be-
tween structured matrices and polynomials is well es-
tablished [8, 43,44].

As discussed in Section 1, we view the connection of
these many strands of work as our strongest conceptual
contribution.
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