
Have Abstraction and Eat Performance, Too:
Optimized Heterogeneous Computing with Parallel Patterns

Kevin J. Brown∗ HyoukJoong Lee∗‡ Tiark Rompf† Arvind K. Sujeeth∗
Christopher De Sa∗ Christopher Aberger∗ Kunle Olukotun∗
∗Stanford University, USA †Purdue University, USA ‡Google, USA

{kjbrown,hyouklee,asujeeth,cdesa,caberger,kunle}@stanford.edu tiark@purdue.edu

Abstract
High performance in modern computing platforms requires
programs to be parallel, distributed, and run on heteroge-
neous hardware. However programming such architectures
is extremely difficult due to the need to implement the ap-
plication using multiple programming models and combine
them together in ad-hoc ways. To optimize distributed ap-
plications both for modern hardware and for modern pro-
grammers we need a programming model that is sufficiently
expressive to support a variety of parallel applications, suffi-
ciently performant to surpass hand-optimized sequential im-
plementations, and sufficiently portable to support a variety
of heterogeneous hardware. Unfortunately existing systems
tend to fall short of these requirements.

In this paper we introduce the Distributed Multiloop Lan-
guage (DMLL), a new intermediate language based on com-
mon parallel patterns that captures the necessary semantic
knowledge to efficiently target distributed heterogeneous ar-
chitectures. We show straightforward analyses that deter-
mine what data to distribute based on its usage as well as
powerful transformations of nested patterns that restructure
computation to enable distribution and optimize for hetero-
geneous devices. We present experimental results for a range
of applications spanning multiple domains and demonstrate
highly efficient execution compared to manually-optimized
counterparts in multiple distributed programming models.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications—concurrent, dis-
tributed, and parallel languages; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—frameworks,
patterns; D.3.4 [Programming Languages]: Processors—
code generation, compilers, optimization

Keywords Parallel patterns, distributed memory, pattern
transformations

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications
Dept., ACM, Inc., fax +1 (212) 869-0481.

CGO ’16, March 12-18, 2016, Barcelona, Spain
Copyright c© 2016 ACM 978-1-4503-3778-6/16/03. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2854038.2854042

1. Introduction

Modern hardware is trending towards increasingly parallel
and heterogeneous architectures. Many machines’ proces-
sors are spread across multiple sockets, where each socket
can access some system memory faster than the rest, creat-
ing non-uniform memory access (NUMA). Efficiently uti-
lizing these NUMA machines with large memory capacities
is becoming increasingly important due to the prevalence
of very large datasets (big data), as they enable local in-
memory computation that is significantly faster than reading
the data from disk or the network. In addition, many ma-
chines also contain specialized accelerators such as GPUs.
Efficiently utilizing all of the hardware resources available
in these machines is very difficult with the programming
models in widespread use today, and fully utilizing a clus-
ter of these machines is even more challenging. Combining
together multiple classic parallel programming models such
as using MPI to communicate between machines, Pthreads
to parallelize across cores within a machine, and CUDA to
offload work to each GPU, can produce a highly efficient im-
plementation but is extremely low-level, tedious, and error-
prone. Such programs are traditionally not only significantly
harder to write but also significantly harder to maintain.
What we want instead is a single system and programming
model that is optimized both for modern hardware (high per-
formance) and for modern programmers (high productivity).
This system should be capable of running a variety of par-
allel applications, provide sequential baseline performance
comparable to hand-optimized implementations, and con-
tinue to function well both as more resources are added to
a single machine (scale up) and more machines are intercon-
nected (scale out).

In recent years many new parallel and distributed sys-
tems have been introduced that provide higher-level pro-
gramming models. Languages such as Scala and Haskell
contain collections libraries in which certain data-parallel
operations are implicitly parallelized across multiple cores
within a machine [20, 29]. Other systems such as MapRe-
duce [11], Dryad [19], and Spark [35] specifically target
clusters of machines and present users with a more restric-
tive programming model. While many of these systems have

Programming Model Features Supported Hardware
Rich data Nested pro- Nested Multiple Random Multi-

System parallelism gramming parallelism collections reads core NUMA Clusters GPUs

MapReduce [11] •
DryadLINQ [18] • • •
Thrust [15] • •
Scala Collections [29] • • • • • •
Delite [7] • • • • • •
Spark [35] • • •
Lime [2] • • • • • •
PowerGraph [13] • • •
Dandelion [31] • • • • •
DMLL • • • • • • • • •

Table 1. Comparison of programming model features and
heterogeneous hardware targets supported by various paral-
lel frameworks in chronological order.

shown strong scalability, they also have very high over-
heads, sometimes requiring hundreds of processors to sur-
pass the performance of optimized sequential C++ imple-
mentations [25]. Programming NUMA machines is possible
with both types of systems, but also typically inefficient with
both. Multi-core frameworks do not account for the need
to distribute data across the different memory regions and
therefore scale poorly, and cluster frameworks incur signif-
icant overhead by using serialization and explicit messages
to communicate between regions.

We compare the programming model features and sup-
ported hardware targets of a variety of recent parallel sys-
tems in Table 1. In particular we identify several features
useful for implementing real-world applications that are
common in traditional programming models but various par-
allel systems have chosen to sacrifice. These features include
rich data parallelism, the ability to use and compose a rich
set of data-parallel operations beyond the classic map and
reduce; and nested programming, the ability to logically nest
parallel constructs. Many systems require a different (se-
quential) programming model within parallel computation.
Even if parallel constructs can be logically nested, the sys-
tem may or may not actually be capable of exploiting all
levels of parallelism at runtime; we refer to this as nested
parallelism. Systems that support multiple collections al-
low parallel computations to directly consume more than
one parallel collection rather than having to first join the
collections in some fashion. This is very useful in certain
domains, e.g., linear algebra. Finally random reads allow ar-
bitrary read access patterns of parallel collections rather than
restricting reads to only the local element, which is very use-
ful in, e.g., graph analytics. As shown in the figure, previous
systems have been forced to sacrifice many of these features
in exchange for expanding to more complex hardware tar-
gets. For example, Scala’s parallel collection library has the
complete set of features described but is restricted to only
run on basic multi-core configurations, while its distributed
cousin Spark sacrificed almost all of these features for auto-
matic distribution. It is worth noting that the systems that are
most feature- and hardware-complete (Delite [7], Lime [2],
Dandelion [31], DMLL) are compilers rather than libraries.

In this paper our goal is to extend a data-parallel program-
ming model to heterogeneous distributed hardware with-
out sacrificing these programming model features, and with-

out sacrificing single-machine performance. We introduce a
novel intermediate language, the Distributed Multiloop Lan-
guage (DMLL), and illustrate how applications written us-
ing data-parallel patterns in this language can be optimized
to run as efficiently as hand-optimized implementations and
also scale to multiple heterogeneous hardware targets.

In particular, we make the following contributions:

• We demonstrate that implicitly parallel patterns can be
used to automatically distribute code and data using
straightforward analyses. This is in contrast to existing
systems that require explicitly distributed data structures.

• We present a novel intermediate language and a corre-
sponding set of transformations for nested parallel pat-
terns that restructure computation for heterogeneous de-
vices. This enables automatically generating performance-
portable code for heterogeneous hardware as opposed to
directly translating the algorithms as written.

• We are the first to show a complete compiler and runtime
system that can execute implicitly parallel, single-source
applications across a heterogeneous cluster that includes
non-uniform memory and accelerators.

• We present experimental results for multiple applica-
tions demonstrating high performance for automatically-
optimized implementations compared to manually op-
timized implementations using existing state-of-the-art
distributed programming models.

2. Related Work
This paper builds on a rich history of work from the func-
tional programming, high performance computing (HPC),
and database communities.

High-level Parallel Programming Many distributed and
heterogeneous programming frameworks have previously
been proposed. One of the most famous is MapReduce [11]
for large clusters. More recent proposals have focused on
addressing the inefficiencies of this model as in Spark [35]
and/or adding more generality as in Dryad [19] and Dryad-
LINQ [18]. Other systems such as Pregel [23] and Power-
Graph [13] have extended this model particularly for graph
analytics. Galois [26] performs efficient graph analytics in
shared memory but does not scale out to distributed systems.

Dandelion [31] compiles LINQ programs to clusters and
GPUs. Lime compiles Java programs to GPUs [12] and FP-
GAs [2] but provides a much more imperative programming
model with only basic data-parallel operations. X10 [9] also
supports only basic data parallelism over arrays but targets
explicitly distributed memory. Delite [7] provides a richer
set of functional operators but only targets multi-core and
GPUs. NESL [4] and Data Parallel Haskell [20] support
nested parallelism, but unlike DMLL they rely on flattening
transformations which can reduce efficiency.

The trade-offs in programing model and hardware targets
for these systems are summarized in Table 1. With DMLL
we unify the most useful programming model features into
a single system for data analytics and add support for one of

the most performant but previously overlooked hardware tar-
gets: big-memory NUMA machines. Supporting these fea-
tures is made possible primarily through multiple compiler
optimizations on parallel patterns.

Pattern Transformations The nested pattern transforma-
tions in this paper leverage recent work on implementing
extensible compilers for high-level programs [30], on pro-
gram transformation using rewrite rules [6], and on com-
bining optimizations in a modular fashion [10, 22, 33]. The
transformations presented in this paper are designed to im-
prove locality and are therefore similar in spirit to multiple
previous transformation systems. Systems designed to op-
timize imperative loops using polyhedral analysis such as
Pluto [5], PPCG [34], and Polly [14] can perform automatic
tiling, parallelization, and distribution of nested loops to tar-
get CPUs and/or GPUs. However, while these systems work
well for loops with completely affine memory accesses, they
fail on commonly occurring data-dependent operations such
as filters and groupBys [3]. The formalism presented in this
paper exploits the higher level semantics of parallel patterns
over generic for loops to overcome this limitation. This is
particularly critical for data analytics compared to HPC as
such data-dependent operations are extremely common.

Spartan [17] also performs automatic tiling and data dis-
tribution, but via parallel patterns on mult-dimensional ar-
rays. In contrast to our work, Spartan focuses solely on the
data distribution, and not how to optimize the computation
at multiple levels. Systems such as FlumeJava [8] and Data
Parallel Haskell [20] also use a rewrite system to optimize
parallel patterns, but they only focus on pipeline fusion and
flattening transformations across functional operators and do
not consider optimizing nested parallelism.

3. Locality-Enhancing Transformations
Parallel patterns have become an increasingly popular choice
for abstracting parallel programming and appear in multiple
recent systems [7, 11, 15, 20, 24, 35]. Previous work has
shown how a relatively small number of parallel patterns can
naturally capture a wide range of operations across multiple
domains [32]. The key benefit of these patterns is that they
abstract over the low-level implementation differences and
encode the parallelism and synchronization requirements at
a sufficiently high level to be portably mapped to hardware
targets as varied as large data centers [11] and an FPGA [2].

Modern distributed systems often provide a parallel pat-
tern API but also enforce certain restrictions that require the
user to reason about data movement explicitly. To better il-
lustrate the challenges of writing applications within such re-
strictive distributed programming models, consider how we
might parallelize and distribute the classic k-means applica-
tion, which can be implemented very succinctly in two dif-
ferent ways using data-parallel patterns as shown in Figure 1.
In this example we show a single iteration of the core com-
putation loop for simplicity. The application assigns each
data point to the nearest cluster, and then computes new
cluster locations by averaging the data points assigned to

1 //matrix: large dataset being clustered
2 val matrix = Matrix.fromFile(path)(parseMatrix)
3 val clusters = Matrix.fromFunction(numClusters, numFeatures)(
4 (i,j) => math.random())
5
6 //shared-memory version
7 //data implicitly shuffled via indexing operation ’matrix(as)’
8 val assigned = matrix.mapRows { row =>
9 clusters.mapRows(centroid => dist(row, centroid)).minIndex

10 }
11 val newClusters = clusters.mapIndices { i =>
12 val as = assigned.filter(a => a == i)
13 matrix(as).sumRows.map(s => s / as.count)
14 }
15
16 //distributed-memory version
17 //data explicitly shuffled via ’groupBy’ operation
18 val clusteredData = matrix.groupRowsBy { row =>
19 clusters.mapRows(centroid => dist(row, centroid)).minIndex
20 }
21 val newClusters = clusteredData.map(e => e.sum / e.count)

Figure 1. Two ways of writing the core computation (one
iteration) of k-means clustering using data-parallel patterns.

each current cluster. With some basic pipeline fusion opti-
mizations our initial implementation performs quite well on
multi-core but suffers at larger scales due to the paralleliza-
tion over the relatively small dataset clusters. Attempting to
partition the data is also quite challenging since as written
an unknown subset of matrix is required to compute an ele-
ment of newClusters. Therefore this implementation cannot be
directly ported to typical distributed programming models.

We must instead figure out how to rewrite k-means in a
more distributed-friendly style, shown in the second half of
Figure 1. Now all of the outer-level parallelism is clearly
over the matrix rows, which are explicitly shuffled for the
following average, making the optimal data distribution
strategy much more apparent. Once we have found this strat-
egy we now need to rewrite the application to expose this in-
formation explicitly to the distributed framework. In Spark,
for example, this can be achieved by lowering the matrix
to an RDD[Vector] where each Vector represents a matrix row
(an RDD is a linear distributed collection). Unfortunately,
performing this lowering makes targeting GPUs very diffi-
cult due to the inefficiencies of reducing vector types. For
GPUs we instead need a different lowering transformation
that transposes the operation and reduces scalars instead of
vectors. We present solutions to these issues in the remainder
of this section.

3.1 The Distributed Multiloop Language
Generating efficient implementations of applications writ-
ten like the above example requires multiple high-level op-
timizations. Making parallel patterns compose efficiently is
often the single most important optimization required. Previ-
ous work has considered optimizing across flat pipelines [8,
20], but does not consider nested parallelism.

To define these transformations we present the Dis-
tributed Multiloop Language (DMLL) as an intermediate
language for modeling a wide range of parallel patterns.
In this language we represent high-level data-parallel pat-

terns as multiloops, a highly flexible loop abstraction that
can contain multiple fused loop-based patterns. A multi-
loop is a single-dimensional traversal of a fixed-size integer
range that may produce zero or more values at each iter-
ation. Each multiloop contains a set of generators, which
capture the high-level structure of the loop body (the paral-
lel pattern) and accumulate the loop outputs. After the loop
terminates, each generator returns a result to the surround-
ing program. Previous work has shown how multiloops lend
themselves well to advanced loop transformations, including
pipeline fusion and horizontal fusion (returning multiple dis-
joint outputs from a single traversal) [30]. Each multiloop
is typically constructed with a single generator for its body
(it returns a single output), but after horizontal fusion may
contain multiple generators. Here we extend and modify the
previous language to capture nested pattern transformations
and make it portable to heterogeneous accelerators. The cur-
rent set of DMLL generators is defined in Figure 2(a). A col-
lect generator accumulates all generated values and returns
a collection as the result of the loop. This is general enough
to implement the classic operations of map, zipWith, filter,
and flatMap. A reduce generator performs on-the-fly reduc-
tion with a given associative operation. A bucket-collect or
bucket-reduce generator collects or reduces values in buckets
indexed by keys. A bucket-collect with only the key function
defined is often called groupBy.

Each generator contains multiple functions that capture
the key user-defined components of the computation. Keep-
ing the components separated rather than composed into a
single block in the IR makes it possible to later compose
the functions in different ways to generate efficient code for
multiple hardware targets. Figure 2(b) illustrates DMLL se-
mantics by providing one possible sequential implementa-
tion. For example, to perform a collect operation on the CPU
we can emit code that uses the condition block to guard
appending the result of the value function block to an out-
put buffer. There are many more possible implementations
however. For the GPU we can instead evaluate the condi-
tion block for all indices up front, allocate an output buffer
of the correct size, and then perform a second loop to write
the result of the value function directly to the correct output
location. The bucket generators are more complicated to im-
plement but still sufficiently abstract. In particular each im-
plementation can transparently decide to maintain the buck-
ets by hashing (CPU) or sorting (GPU).

In this section we will write examples in pseudocode
using standard data-parallel operators available in DMLL.
A simple map-reduce example looks like:

x.map(e => math.exp(e)).reduce((a,b) => a + b)

We translate this language to our DMLL formalism by im-
plementing map using a Collect generator with an always true
condition and similarly reduce using a Reduce generator:

C = Collectx(_)(i => math.exp(x(i)))
ReduceC(_)(i => C(i))((a,b) => a + b)

We denote the always true condition as _. Collectx is short-
hand for a Collect over the size of x (and similarly for ReduceC).
We can then fuse these operations with a simple rewrite rule:

C = Collects(c1)(f1) → Reduces(c1&c2)(f2(f1))(r)
ReduceC(c2)(i => f2(C(i)))(r)

Note that Collect is more general than Map and therefore the
rule applies to many more cases than the simple example.
In fact we can further generalize this rule to apply to any
generator G that consumes a Collect.

C = Collects(c1)(f1) → Gs(c1&c2)(k(f1))(f2(f1))(r)
GC(c2)(i => k(C(i)))(i => f2(C(i)))(r)

This rule alone captures all traditional pipeline fusion opti-
mizations in DMLL (e.g., map-reduce, filter-groupBy, etc.).

3.2 Nested Pattern Transformations
We use the DMLL formalism to express a set of useful trans-
formations on nested patterns, motivated with simple code
examples drawn from classic applications in the domains of
machine learning and data querying. First consider the fol-
lowing simple aggregation query common in SQL-like lan-
guages:

lineItems.groupBy(item => item.status).map(group =>
group.map(item => item.quantity).reduce((a,b) => a + b))

As written, it creates a bucket for each lineItem status. Each
bucket is then summed to return an array of scalar values.
However, it is not necessary to construct the buckets first
and then reduce them. We can instead transform this compu-
tation into a single multiloop with a BucketReduce generator:

BucketReduce(lineItems.size)(_)(i => lineItems(i).status)
(i => lineItems(i).quantity)((a,b) => a + b))

This version, while less easy to read, performs only a sin-
gle traversal and reduces the quantities as they are assigned
to buckets. We therefore generalize this transformation to
the GroupBy-Reduce rule in Figure 3. This rule matches a
BucketCollect that is consumed by a Collect which contains
a nested Reduce of each bucket. The expanded lambda ex-
pression i => Reduces(c)(f)(r) denotes a pattern match on the
Collect function, where an enclosing context is implicitly
assumed (i.e., the function may contain statements besides
the Reduce). We can then combine the functionality contained
within the BucketCollect and the Reduce into a single BucketReduce.
The Collect that consumes the transformed BucketReduce sim-
ply expresses an identity loop over H , but also implicitly
contains the remaining (untransformed) enclosing context of
the pre-transformed Collect. For example, if the application
instead averages each group, the division after the sum will
remain in the untransformed Collect context. In the simple
case where the context is empty, this extra identity loop is
simply optimized away.

We see this pattern appear not only in many data-querying
applications but in machine learning applications as well.
Consider the k-means clustering algorithm in the second half
of Figure 1. While the computation is much more complex
than the first example, operates on matrices rather than flat
arrays, and performs summations over vector types rather

G ::= Collects(c)(f) : Coll[V]
| Reduces(c)(f)(r) : V
| BucketCollects(c)(k)(f) : Coll[Coll[V]]
| BucketReduces(c)(k)(f)(r) : Coll[V]

[[Collects(c)(f): Coll[V]]] =
val out = new Coll[V]
for (i <- 0 until s) {
if (c(i)) out += f(i)

}

[[BucketCollects(c)(k)(f): Coll[Coll[V]]]] =
val out = new Coll[Coll[V]]
val map = new Map[K,Index]
for (i <- 0 until s) {
if (c(i)) out(map(k(i))) += f(i)

}

c: Index => Boolean condition
k: Index => K key function
f: Index => V value function
r: (V,V) => V reduction
s: Integer loop size

[[Reduces(c)(f)(r): V]] =
var out = identity[V]
for (i <- 0 until s) {
if (c(i)) out = r(out, f(i))

}

[[BucketReduces(c)(k)(f)(r): Coll[V]]] =
val out = new Coll[V]
val map = new Map[K,Index]
for (i <- 0 until s) {
if (c(i)) out(map(k(i))) = r(out(map(k(i))), f(i))

}

(a) DMLL Syntax (b) DMLL Semantics (Sequential Implementations)

Figure 2. DMLL Syntax & Semantics

(GROUPBY-REDUCE)
A = BucketCollects(c)(k)(f1)
CollectA(_)(i => ReduceA(i)(_)(f2)(r))

→ H = BucketReduces(c)(k)(f2(f1))(r)
CollectH(_)(i => H(i))

(CONDITIONAL REDUCE)
Collects1(_)(i =>
xx Reduces2(j => g(j) == h(i))(f)(r))

→ H = BucketReduces2(_)(g)(f)(r)
CollectH(_)(i => H(h(i)))

(COLUMN-TO-ROW REDUCE) Collects1(_)(i => Reduces2(c)(f)(r)) → R = Reduces2(c)(fv)(rv)
Collects1(_)(i => R(i))

(ROW-TO-COLUMN REDUCE)
Reduces1(c)(fv)(rv:(a1,b1) =>
xx Collects2(_)(i => r(a1(i),b1(i))))
iff size(a1) == size(b1) == s2

→ Collects2(_)(i => Reduces1(c)(f)(r))

Figure 3. DMLL: Nested Parallel Pattern Transformations.

than scalar types, the overall outer structure of the compu-
tation in terms of parallel patterns is the same and the same
rewrite rule applies. The same pattern also appears in the k-
nearest neighbors application, which uses grouping to count
the fraction of k data samples per data label and select the la-
bel with the largest count. In fact the recent widespread suc-
cess of the MapReduce programming model is a testament
to just how often this pattern occurs in real applications.

But what if k-means is written as in the first half of Fig-
ure 1 rather than the second? The simple strategy of just par-
allelizing the outer loop can actually perform quite well in
a multi-core environment, but for distributed memory it will
require the entirety of matrix to be broadcast to every machine
computing the updated cluster locations, defeating the pur-
pose of distributing the data across multiple machines. The
required transformation is not immediately obvious, and re-
quires introducing intermediate data structures. The pattern
to notice is that the application is conditionally reducing val-
ues (e.g., reducing some subset of a dataset) within an outer
loop where the reduction predicate is a function of the outer
loop index. This leads us to the Conditional Reduce trans-
formation, which when applied yields the transformed code
for k-means shown in Figure 5. The transformation breaks
the dependency on the outer loop index and lifts the inner
reduction out of the loop by pre-computing all of the par-
tial reductions with a single pass over the dataset. Note that
we are using the condition function of the original Reduce as
the key function of the BucketReduce so each partial reduction
in the original code is accumulated into a separate bucket.
Now we traverse the large dataset matrix only once to pre-
compute sums for each cluster in parallel and store them in-
dexed by cluster. Then a second loop performs just index
lookups. It is important to note that even though ss and cs are

expressed as separate traversals loop fusion will merge these
two BucketReduce loops, along with the loop that computes
assigned, into a single traversal. In fact, after transformation
and fusion take place we end up with the exact same opti-
mized code as the result of applying the GroupBy-Reduce
rule to the groupBy formulation of k-means. Furthermore we
can now see a straightforward partitioning and paralleliza-
tion strategy of the large dataset across the cluster.

Optimizing for Heterogeneous Architectures Rather than
flattening nested patterns it is often necessary to instead
interchange their order. Consider the example of logistic
regression. The textbook description translates into parallel
patterns in a straightforward way:

1 val newTheta = Range(0, x.numCols) map { j =>
2 val gradient = Range(0, x.numRows) map { i =>
3 x(i,j)*(y(i) - hyp(oldTheta, x(i)))
4 }.sum
5 oldTheta(j) + alpha * gradient
6 }

For each feature (column) j, the algorithm computes a gra-
dient of the sample dataset in a nested summation loop. Un-
fortunately, this implementation can be rather inefficient. In
practice, the number of samples (rows) in the dataset is or-
ders of magnitude larger than the number of features, and
as such it is the samples that should be distributed. As writ-
ten however every sample needs to be broadcast to all of the
processors computing the summations. Therefore it is much
more efficient to parallelize over the samples, traversing the
big data set only once and accumulating results for each fea-
ture in parallel. The implementation requires several individ-
ual transformations: fissioning the imperfectly nested loop,
interchanging the nested loops, and vectorizing the reduc-
tion. The final result is shown below:

1 val gradientVec = Range(0, x.numRows) map { i =>
2 Range(0, x.numCols) map { j =>
3 x(i,j)*(y(i) - hyp(oldTheta, x(i)))
4 }
5 }.sum
6 val newTheta = Range(0, x.numCols) map { j =>
7 val gradient = gradientVec(j)
8 oldTheta(j) + alpha * gradient
9 }

This version makes crucial use of the fact that our multiloop
reduction facility is not limited to scalar values but is also
able to reduce collections, using Collect (i.e., zipWith) to im-
plement vectorized addition. Instead of constructing a vector
of sums, we are computing a sum of vectors.

Despite the seemingly complex changes to the applica-
tion code, we can generalize this variety of loop interchange
with the simple Column-to-Row Reduce rule in Figure 3.
In this rule fv and rv denote vectorized versions of f and r

which are implemented by wrapping each scalar function
with a Collect. Once again the transformed Collect contains
the remaining untransformed enclosing context of the orig-
inal Collect. Applying this rule to the logistic regression ex-
ample provides a better traversal pattern when targeting mul-
tiple CPUs as well as a better way of partitioning the dataset
x. However when considering GPU execution the original
traversal order shown was actually superior since it reduces
scalars rather than vectors and reducing non-scalar types on
a GPU is typically very inefficient due to limited shared
memory capacity. Fortunately we can also express the in-
verse transformation to a Column-to-Row Reduce, the Row-
to-Column Reduce in Figure 3, to invert the loops to create
multiple scalar reduces.

To generate code for clusters of GPUs for this example it
is therefore necessary to perform a Column-to-Row Reduce
transform for parallelization across the cluster and then ap-
ply the Row-to-Column Reduce when generating the GPU
kernel implementation, effectively distributing over samples
(rows) and then summing over features (columns) within
each node. This is always possible as the two transformation
rules are completely reversible, which is straightforward to
show by simply substituting one into the other and reducing
identities. The Row-to-Column Reduce allows us to gener-
ate far more efficient GPU code for the k-means example
as well, which also reduces vectors as written. We have ob-
served this rule to be useful in many applications in which
the user wishes to somehow reduce the columns of a matrix.
Examples in machine learning include ridge regression and
Naïve Bayes. We refer the reader to previous work [21] for
details on how to generate GPU kernels from nested patterns
after these transformations have been applied.

Discussion In many situations there is no single “correct”
way to structure the application efficiently for heterogeneous
devices, however the high-level semantics of DMLL still
provide sufficient information to automatically transform to
an optimized representation per device. The rules in Figure
3 represent highly recurring patterns in the applications we
have studied within the domains of machine learning and
data querying, and using these few generator patterns, it is

easy to add new rules for other powerful optimizations. Ul-
timately what these transformation rules enable is a more
relaxed end-user programming model. Users can write ap-
plications in a straightforward way and still obtain portable
performance to multiple architectures. While in general the
system can always fall back to warnings or errors that require
the user to manually restructure the application, we believe
that it is important that this transformation facility be exten-
sible by DSL authors, power users, etc. to help ensure that
such errors occur as infrequently as possible.

Since these transformations are meant to improve local-
ity, the only missing piece for deciding when to apply them
is calculating the original and resulting memory access pat-
terns and knowing which is a better access pattern for the
target hardware. We perform this step for distributed mem-
ory in the following section. For the GPU we always perform
a Row-to-Column Reduce when possible since it enables uti-
lizing shared memory.

4. Distribution Analysis and Optimization
The biggest challenge in terms of making data-parallel ap-
plications portable to heterogeneous hardware is that paral-
lel patterns primarily abstract over the computation, but not
the data structures. Many applications have both “large” col-
lections that should be distributed and “small” collections
which should only be computed by a single machine or be
broadcast to every machine. It is for this reason that exist-
ing systems typically require the user to manually decide
how data is distributed. Returning to our k-means example in
Figure 1 this amounts to deciding that matrix should be dis-
tributed and clusters broadcast and then use different types
and operations for each data structure even though they are
both logically matrices. In this section we show how we can
use straightforward analyses and the DMLL rewrite rules to
automatically transform this example to the explicitly fused
and distributed implementation that a programmer would
normally write manually.

4.1 Partitioning Analysis

To decide which data structures to partition in a program we
first need to know whether each input dataset should be par-
titioned. We obtain this information by having the user an-
notate each data source (e.g., the file reader operations) with
this information. Alternative approaches include using JIT
compilation when the inputs are available or exploiting do-
main knowledge. How exactly this information is obtained
does not affect the rest of the discussion. Once we have
this information we use a forward dataflow analysis (Algo-
rithm 1) that uses the principle of “move the computation to
the data” to decide whether or not every other data structure
should be partitioned based on where and how they are pro-
duced. Local means the collection should be allocated entirely
in one memory region and Partitioned means the collection
should be spread across multiple memory regions.

If a parallel operation consumes only Local data, then its
output is also Local. If instead the pattern consumes one or
more Partitioned collections, the pattern itself (the code) and

Algorithm 1 Pseudocode for Partitioning Analysis.
1: DataLayout ::= Local | Partitioned
2: Stencil ::= Interval | Const | All | Unknown
3: transforms: List[RewriteRule]
4: Input: layouts: Map[Sym,DataLayout]
5: //all layouts initialized to Local unless specified otherwise
6: procedure TRAVERSE(op)
7: if layouts(inputs(op)) contains Partitioned then
8: if isParallel(op) then
9: CheckInputStencil(op)

10: if outputIsPartitionable(op) then
11: layouts(output(op)) := Partitioned

12: else
13: if not isWhitelisted(op) then
14: warn()
15: procedure CHECKINPUTSTENCIL(op)
16: stencils := ComputeInputStencils(op)
17: if stencils contains Unknown then
18: for transform in transforms do
19: xformed := transform(op)
20: newStencils := ComputeInputStencils(xformed)
21: if not (newStencils contains Unknown) then
22: op := xformed return
23: warn()
24: procedure COMPUTEINPUTSTENCILS(op)
25: //for each array read operation within op,
26: //use standard affine analysis to classify as one of Stencil patterns

1 val matrix = PartitionedArray.fromFile(parseMatrix)
2 val clusters = LocalArray.fromFunction(...)
3 val assigned: PartitionedArray = matrix.mapRows { row =>
4 clusters.mapRows(c => dist(row, c)).minIndex //fused
5 }
6 val newClusters: LocalArray = clusters.mapIndices { i =>
7 //note: PartitionedArray matrix accessed at dynamic indices
8 val as = assigned.filter(a => a == i)
9 val sum: LocalArray = matrix(as).sumRows //fused with line 8

10 sum.map(s => s / as.count)
11 }

Figure 4. k-means after the data partitioning analysis

any other local inputs will be broadcast to the partitioned
data. Whether or not the output data is created as Partitioned

is determined by the type of pattern (i.e., a map generates a
Partitioned output but a reduce generates a Local output). Note
that we have said nothing about the data access patterns yet.
Even though the parallel pattern is partitionable, it may still
require a significant amount of communication between par-
titions to execute. Sometimes the communication is funda-
mental (e.g., graph applications), but other times it can be
avoided by restructuring the computation.

Applying this algorithm to k-means we end up with the
transformed code in Figure 4, where data structures have
been explicitly lowered to PartitionedArray or LocalArray. The
two inputs matrix and clusters are given as Partitioned and
Local, respectively. Pipeline fusion eliminates multiple inter-
mediate data structures including the result of mapRows on line
4, as well as as and matrix(as) on lines 8-9. sum is determined to
be Local since it is the output of a reduce and each map on lines
3, 6, and 10 inherits the same type as its input. The only prob-
lem with this lowering is the random access of partitioned
matrix within a local loop. We can detect such problematic
cases automatically using a standard read stencil analysis.

1 val matrix = PartitionedArray.fromFile(parseMatrix)
2 val clusters = LocalArray.fromFunction(...)
3 def assigned = i => clusters.mapRows(centroid =>
4 dist(matrix(i), centroid)).minIndex //fused
5)
6 //lines 7-8 horizontally fused
7 val ss = bucketReduce(true, assigned, i => matrix(i), _ + _)
8 val cs = bucketReduce(true, assigned, i => 1, _ + _)
9 val newClusters: LocalArray = clusters.mapIndices { i =>

10 val (sum: LocalArray, count: Int) = (ss(i), cs(i))
11 sum.map(s => s / count)
12 }

Figure 5. k-means after nested pattern transformations.
This is how the program is traditionally manually written
for high performance in distributed systems.

4.2 Read Stencil Analysis and Transformations

For every multiloop we perform a read stencil analysis for
each input collection to statically detect the range of the
collection the multiloop may access. We consider a simple
set of access patterns that are straightforward to detect using
standard affine analysis.

• Interval denotes that loop index i accesses the ith element
of one dimension of a collection (e.g., the ith row of
a matrix), or equivalently a contiguous interval of the
flattened representation. The runtime should choose a
partition that only splits the collection on the interval
boundaries so that all accesses are local.

• Const denotes an access at a constant index. The runtime
should broadcast the element to every partition.

• All denotes that the entire collection is consumed at each
loop index. The runtime should broadcast the collection.

• Unknown denotes an access at some unknown element x. The
runtime can choose any partition, but must either fully
replicate the collection or must detect non-local accesses
and move data between partitions dynamically.

In many cases more than one parallel operation will con-
sume the same data structure. Therefore after computing the
local stencils, we then compute a global stencil for each col-
lection by conservatively joining its local stencils. Further-
more if two partitioned collections are consumed by an op-
eration we mark them to be co-partitioned at runtime.

Using the stencil analysis we can statically predict if par-
titioning may require non-local accesses. If any stencil is
Unknown we attempt to apply a set of rewrite rules to improve
the access patterns. If any of the rewrites succeed in replac-
ing the Unknown stencil with Interval we replace the pattern
with the transformed version. The set of rewrites we cur-
rently consider are those presented in Figure 3. These rules
do not overlap and we only try to apply a single rule at a
time rather than an exponential combination of them, which
keeps the search space linear and order-independent. If all
available transformations fail, we fall back to transferring
data at runtime. We mark this last case with a warning to the
user since the communication may be expensive.

In the case of k-means, line 9 creates an Unknown stencil
for matrix, which triggers the Conditional Reduce rule, resulting
in the code shown in Figure 5. The transformation allows
assigned to be pipeline-fused into the bucketReduce and both
bucketReduces are horizontally fused into a single traversal over
the partitioned matrix. Furthermore the data structures read
inside the loop on line 10 now have simple access stencils of
Interval rather than Unknown. As discussed in Section 3.2, this
implementation is an equivalent but more optimized version
of the original distribution-friendly k-means snippet shown
in Figure 1.

4.3 Sequential Operations
Finally we consider the case where a partitioned collection
is consumed by a sequential operation. We make the con-
servative assumption that in addition to the well-structured
parallel patterns the programming model also allows arbi-
trary sequential code with arbitrary effects. Therefore only
the parallel patterns can be distributed and the sequential
code must run in order at a single location. We believe the
best practical solution is to simply handle these operations
differently based on the target. If compiling for multi-core
allow the operation, and if compiling for clusters disallow
it. In the algorithm we mark this case with an abstract warn()
to the user. We also relax the restriction slightly by allowing
whitelisting of operations that the compiler developer knows
to be safe. For example, determining the size of a collection
often doesn’t require dereferencing the collection data but is
instead stored as an additional field. Therefore reading that
field is always allowed.

5. Data Structure Optimization and Runtime
In this section we discuss our low-level data structure imple-
mentations and distributed runtime. We implemented DMLL
on top of the Delite DSL framework in order to re-use the ex-
isting heterogeneous code generators (Scala, C++, CUDA)
and compiler optimizations (e.g., code motion, common
subexpression elimination (CSE)).

Distributed Data Structures Using ideas from previous
work [30], we implemented multiple data structure opti-
mizations including struct unwrapping, dead field elimina-
tion (DFE), and array-of-struct to struct-of-array (AoS to
SoA) transformations, which work together to reduce com-
plex data structures to simple arrays of primitives. In addi-
tion to yielding more efficient generated code by removing
indirections and enabling vectorization, these optimizations
greatly simplify the stencil analysis.

Delite provides a shared memory execution model. While
writes within parallel patterns are typically required to be
disjoint, reads can safely be random. DMLL also supports
this through Unknown read stencils. We extended Delite’s array
abstraction by adding new runtime types for distributed ar-
rays that contain not only the local chunk of array data but
additional metadata for accessing the remainder of the log-
ical array as well. Reads at indices that are not physically
present are trapped and transparently fetched from the ap-
propriate remote location. To determine the location of the

data we build a directory of index ranges to locations when
the array is first instantiated and broadcast the directory to
every physical instance of the logical array. When the par-
titioning analysis decides an array should be partitioned we
lower to this new back-end implementation. The remainder
we lower to the original shared-memory implementation.
This ensures that we only pay the runtime cost of tracking
partitioned arrays when necessary.

Many distributed systems forbid remote reads altogether
for better performance guarantees, but we rely on the struc-
tured nature of parallel patterns, transformation rules, and
good DSL design to limit remote reads. There are a number
of important applications in which the primary distributed
dataset cannot be perfectly partitioned (e.g., graph prob-
lems), thereby requiring either replication of the dataset or
reading portions of the dataset from remote memories.

Hierarchical Heterogeneous Execution The key insight
to adding NUMA and cluster support on top of the multi-
core and GPU runtime in an incremental manner is that a
multiloop is agnostic to whether it runs over the entire loop
bounds or a subset of the loop bounds. Therefore the clus-
ter master can partition a given multiloop into chunks and
distribute those chunks across machines. The range of each
machine’s chunk is chosen by combining the input data’s ac-
cess stencil with the input’s directory to obtain the range of
indices that will result in local reads (we move the compu-
tation to the data). Then each machine can further partition
its chunk of work across sockets, cores, and/or GPUs using
similar logic. The multi-core partitioner also provides dy-
namic load balancing within each machine, which provides
much better scaling for irregular applications.

6. Experimental Results
In this section we present performance results for DMLL
for multiple applications across multiple hardware configu-
rations. We chose benchmarks from the domains of machine
learning, data querying, and graph analytics that are repre-
sentative of the important field of big data analytics.

The first sets of experiments were all performed on a
single NUMA machine with 4 sockets, 12 Xeon E5-4657L
cores per socket, and 256GB of RAM per socket. DMLL
generated C++ code which was then compiled with gcc 4.8,
optimization level 3. Each experiment was performed five
times and we report the average of all runs.

Baseline performance First we compare DMLL’s sequen-
tial performance to hand-optimized C++ implementations in
Table 2. For the iterative algorithms we present execution
time per iteration and total execution time for the others. We
observe that DMLL is within 25% of hand-optimized for ev-
ery application. The optimizations required to achieve this
performance are summarized in Table 2. DMLL Query 1 is
even faster than the C++ version due to using a more effi-
cient HashMap than is in the C++11 standard library. The
remaining performance gaps are mostly due to the fact that
like many functional languages, DMLL applications typi-
cally allocate more memory than strictly necessary, whereas

Benchmark Optimizations Data Set DMLL C++ ∆

TPC-H GroupBy-Reduce, TPC-H SF5 1.07s 1.82s -41%
Query 1 pipeline fusion, (5.3GB)

AoS to SoA, CSE, DFE
Gene pipeline fusion, DFE 3.5M genes 0.341s 0.311s 9.6%
Barcoding (689MB)
GDA pipeline fusion, 500k x 100 8.50s 6.92s 23%

horizontal fusion, CSE matrix
(835MB)

k-means Conditional Reduce, 500k x 100 0.885s 0.843s 5.0%
Row-to-Column Reduce, matrix per iter per iter
pipeline fusion (835MB)

Logistic Column-to-Row Reduce, 500k x 100 0.082s 0.075s 9.3%
Regression Row-to-Column Reduce matrix per iter per iter

(835MB)
PageRank domain-specific LiveJournal [1] 0.646s 0.518s 25%

push-pull transformation, (1.1GB) per iter per iter
pipeline fusion

Triangle domain-specific LiveJournal 12.3s 12.4s -0.8%
Counting push-pull transformation, (1.1GB)

pipeline fusion

Table 2. Benchmarks: DMLL optimizations applied and se-
quential performance comparison to hand-optimized.

0	

0.5	

1	

1.5	

2	

2.5	

3	

 LogReg	
 k-­‐means	

Sp
ee
du

p	

	

(o
ve
r	
 n

on
-­‐t
ra
ns
fo
rm

ed
)	
 GPU	

transpose	

scalar	
 reduce	

both	

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

Query	
 1	
 LogReg	
 k-­‐means	

CPU	

1	
 socket	

4	
 sockets	

Figure 6. Speedups obtained by applying the nested pattern
transformations for GPUs (left) and CPUs (right).

the hand-optimized applications aggressively reuse allocated
memory. Pipeline fusion greatly reduces this issue but is not
sufficient to remove it entirely.

Impact of Nested Pattern Transformations Next we study
the performance and scalability impact of the nested pattern
transformations in Section 3.2 in Figure 6. DMLL often re-
quires these transformations to properly partition data across
a cluster (they are not simply performance optimizations), so
we only study the performance impact in shared memory.
For k-means the impact is very small (around 3%) when
parallelizing across cores within a single socket, as both
versions effectively traverse the large dataset once (albeit
in different orders) and consume consecutive chunks of the
dataset at a time. When parallelizing across multiple sockets
however, the original shared-memory implementation stops
scaling due to the more limited exposed parallelism and
constrained memory bandwidth due to shuffling data across
sockets, leading to nearly 3x speedup on 4 sockets for the
transformed version. Logistic regression and Query 1 both
run faster even in one socket as the applied transformations
greatly improve cache locality and memory access patterns
and are therefore always beneficial for CPUs whether the ar-
chitecture is single-threaded or massively distributed.

For the GPU, both k-means and logistic regression per-
form summations over vectors as written. However DMLL’s

CUDA code generator can only use local shared memory for
reduction temporaries when they have a fixed size (scalar
types), which leads to poor performance when attempting
to reduce vector types. In addition the input matrix must be
transposed to enable multiple threads’ memory requests to
be coalesced by the GPU’s memory controller. DMLL uses
the Row-to-Column Reduce rule to transform vector reduc-
tions into scalar reductions and transposes the input matrix
when transferring it to the GPU to optimize kernel access
patterns. The read stencil information used to distribute the
matrix also tells DMLL how to transpose it. For logistic re-
gression both the Row-to-Column and transpose transforma-
tions must be combined for maximum performance, but for
k-means transposing provides most of the performance im-
provement as it speeds up the entire operation, not just the
reduction.

6.1 NUMA Scalability

In Figure 7 we study NUMA performance compared to
popular alternative frameworks: Spark [35] for the machine
learning and data querying apps and PowerGraph [13] for
the graph analytics. We also compare to Delite [7] without
DMLL improvements. For each application DMLL applies
all of the compiler optimizations in Table 2 automatically.
For the other systems we ported each application directly to
their programming model and performed all possible opti-
mizations manually. However not all of DMLL’s optimiza-
tions were possible to express. In particular, DMLL trans-
parently performs AoS to SoA transformations, which en-
ables storing the table in Query 1 as multiple arrays of prim-
itives rather than a single array of objects. Such a transfor-
mation is not possible in Spark because each field of the
output record is produced from multiple fields of the in-
put record, and therefore the input collection cannot simply
be split into an RDD per field. Also note that performing
NUMA-aware memory allocations is not currently possible
within the JVM, which severely limits the scalability of JVM
systems on this machine.

With DMLL we first augmented the Delite runtime to
pin threads to physical cores in a locality-aware manner and
to create thread-local heaps. These two items are sufficient
to ensure that thread-local data remains local (DMLL Pin-
only). We then added the NUMA-aware features which in
addition to pinning use the analyses in Section 4 to partition
large arrays across multiple memory regions (DMLL). In
general reading data from all memory banks simultaneously
is necessary to maximize memory bandwidth. The generated
application code is essentially identical except for how each
array is physically allocated. For the pin-only version each
array is allocated entirely within a single socket’s memory,
with the socket determined by which thread calls malloc for
that array. For the NUMA-aware version, partitioned arrays
are instead partially allocated across every socket’s mem-
ory. As shown in Figure 7 the majority of benchmarks scale
reasonably well up to two sockets but then stop scaling for
Delite, while the DMLL versions continue to scale. For the
first two apps the NUMA-aware version scales best as most

0	
 50	

1	
 12	
 24	
 48	

Delite	
 DMLL	
 Pin	
 Only	
 DMLL	
 Spark	
 PowerGraph	

0	

10	

20	

30	

40	

50	

1	
 12	
 24	
 48	

Gene	

0	

10	

20	

30	

40	

50	

1	
 12	
 24	
 48	

GDA	

0	

5	

10	

15	

20	

25	

1	
 12	
 24	
 48	

LogReg	

0	

10	

20	

30	

40	

50	

1	
 12	
 24	
 48	

k-­‐means	

0	

10	

20	

30	

40	

50	

1	
 12	
 24	
 48	

Triangle	

0	

5	

10	

15	

20	

25	

30	

35	

1	
 12	
 24	
 48	

PageRank	

0	

5	

10	

15	

20	

25	

30	

35	

1	
 12	
 24	
 48	

Sp
ee
du

p	

ov
er
	
 S
eq

ue
n;

al
	
 D
M
LL
	
 TPCHQ1	

Figure 7. Performance and scalability comparison of DMLL, Delite, Spark, and PowerGraph on a 4 socket machine.

0.0	
 10.0	

Spark	
 PowerGraph	
 DMLL	
 CPU	
 DMLL	
 GPU	
 DimmWi8ed	

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

Q1	
 Gene	
 GDA	

Sp
ee
du

p	

ov
er
	
 S
pa

rk
	

Compute	
 Component	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

4.0	

1.7	
 GB	
 17GB	

k-­‐means	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

3.4GB	
 17GB	

LogReg	

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

8.0	

k-­‐means	
 LogReg	
 GDA	

GPU	
 Cluster	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

PageRank	
 Triangle	
 Ct	

Sp
ee
du

p	

ov
er
	
 P
ow

er
G
ra
ph

	

0	

10	

20	

30	

40	

50	

60	

12	
 CPU	
 48	
 CPU	
 GPU	

Sp
ee
du

p	

ov
er
	
 S
eq

ue
nA

al
	

Di
m
m
W
iC
ed

	

Gibbs	
 Sampling	

Figure 8. Performance of DMLL compared to manually optimized implementations in alternative systems. The left three
graphs were run on the 20 node Amazon cluster, and the next two on the 4 node GPU cluster connected within a single rack.

of the memory accesses are to the partitioned data structures,
therefore partitioning increases the available bandwidth. For
the next three apps most of the computation is within nested
loops over thread-local data structures, so pinning is suffi-
cient to maximize locality and memory bandwidth. For Tri-
angle Counting even the baseline multi-core version scales
well as the working sets tend to fit in cache, thereby hid-
ing NUMA issues. PageRank benefits from pinning, but re-
quires significant inter-socket communication, which limits
the overall scalability and bandwidth benefit of partitioning.

We also show that all DMLL versions are significantly
faster than the Spark and PowerGraph implementations. The
single-threaded performance improvements are largely due
to the compiler optimizations discussed and highly efficient
code generation of Delite compared to library implementa-
tions, while the improved scalability is due to NUMA-aware
optimizations and a low overhead runtime.

6.2 Heterogeneous Clusters

The next set of experiments were performed on Amazon
EC2 using 20 m1.xlarge instances. Each machine contained
4 virtual cores, 15GB of memory, and 1Gb Ethernet con-
nections. DMLL generated Scala code and ran entirely in
the JVM to provide the most fair comparison with Spark.
We used Java 1.6.0b24 with default options. The results are
shown in Figure 8. We do not show Delite performance here
as it does not scale to multiple machines. For each appli-
cation DMLL uses the same parallelization and distribution
strategy as Spark, however in the Spark version this is en-
forced manually and in DMLL it is performed automatically
by the partitioning analysis. Spark allows users to control
whether collections are written to disk or kept in memory.
In these experiments we kept all data entirely in memory,
sacrificing fault tolerance for maximum performance.

The first two benchmarks (Query1 and Gene) only iterate
over the primary dataset once, so in isolation they are funda-
mentally I/O bound, and both systems take roughly the same
amount of time to read data from disk. However, we separate
the input loading time from the computation time to demon-
strate the potential speedup if the dataset being queried al-
ready resides in memory. GDA is similar but iterates over its
dataset twice. k-means and logistic regression however both
iterate over the primary dataset many times, and therefore
the initial I/O cost is amortized over a large number of iter-
ations. Overall the performance difference between DMLL
and Spark is much smaller on this configuration, comparable
to the single-threaded performance difference between the
two systems, as each machine has very few resources and
both systems distribute the data and work across machines
identically. Switching to a cluster of higher-end machines
with more CPUs increases the gap, as seen in the results on
the GPU cluster.

For the GPU and graph experiments we switched to
a smaller high-end cluster of 4 nodes, each with 12 In-
tel Xeon X5680 cores, 48GB of RAM, an NVIDIA Tesla
C2050 GPU, and 1Gb Ethernet within a single rack. We
implemented the graph benchmarks in OptiGraph, a graph
analytics DSL built on top of DMLL that uses the same
domain-specific transformations that have been shown previ-
ously [16] to transform applications between a pull model of
computation (common in shared memory) to a push model
of computation (common in distributed systems) based on
the hardware target. For these experiments we compare
against PowerGraph as it has been shown to be substan-
tially faster than Spark for graph analytics applications [13].
Both systems implement the same high-level model of com-
putation, namely pushing the required data to local nodes
and then performing the computation locally. As such both
systems transfer the data across the network in roughly the

same time. The computation portion runs faster in DMLL
due to the low-level nature of DMLL’s generated code com-
pared to the PowerGraph library implementation, however
this is largely overshadowed by the communication, leading
to comparable overall performance. Comparing the previ-
ous NUMA results, we see the usefulness of large memory
NUMA machines for graph analytics. For the cluster im-
plementation of both systems, most of the execution time is
spent transferring the graph over the network and building a
local cache of the received remote data, which is slower than
just using a single machine. In a NUMA machine however,
accessing remote portions of the graph is still relatively fast,
and therefore the efficiency of the generated code has a large
impact on the overall performance and scalability.

Finally we show DMLL’s GPU performance. GDA is
well-suited to GPU execution and runs over 5x faster than
Spark without any additional optimizations beyond what
DMLL already performed for the CPU. k-means has been
previously shown to perform well on GPUs when manually
optimized, but, as discussed in Section 6, generating effi-
cient code automatically requires multiple transformations.
Without these transformations the GPU code performs worse
than DMLL’s CPU code, but applying them provides 7.2x
speedup over Spark. The same transformations are required
for logistic regression. Logistic regression has much lower
arithmetic intensity than k-means however, and so the im-
proved execution time comes largely from the GPU’s higher
memory bandwidth rather than compute power. The other
benchmarks we studied generally do not perform very well
on GPUs due to the fact that the cost of moving the data to
the GPU is often more expensive than just computing the
result on the CPU. For iterative algorithms however this is
not the case. Just as the cost of reading the data from disk
is amortized over many iterations, so is the initial cost of
moving the data to the GPU.

6.3 Application Case Study: Gibbs Sampling

In this section we apply DMLL to a real-world application
that is actively being researched and used in commercial data
analytics engines today. Gibbs sampling on factor graphs
is a popular method to solve Bayesian statistical problems
including price modeling and information extraction that is
used in several commercial data analytics engines. It is one
of the core components of DeepDive [28], which uses the
DimmWitted [36] implementation.

The application presents a unique challenge for parallel
frameworks as the optimal parallelization strategy is differ-
ent for cores within a socket compared to across sockets. The
algorithm exploits the fact that threads within a socket can
communicate very inexpensively (through last-level cache)
by performing Hogwild! [27] updates, in which threads read
and write the shared output model asynchronously. This ex-
ecution model quickly stops scaling beyond a single socket
however due to the much higher costs of cache coherency.
Therefore the implementation creates a distinct model for
each socket, samples each model independently, and then
averages the samples to produce the final output. Express-

ing this algorithm using data-parallel constructs fundamen-
tally requires the system to be able to exploit nested paral-
lelism, which is lacking in many systems. DMLL distributes
the outer parallelism over models across threads on different
sockets, and then for the inner parallelism within a model it
uses multiple threads within a socket.

As shown in Figure 8, using this strategy both DMLL
and DimmWitted scale nearly linearly across sockets on the
4 socket machine. However the DMLL version is over 2x
faster sequentially and 3x faster with multi-core due to the
efficiency of our generated code that uses unwrapped arrays
of primitives, while the hand-written version contained more
pointer indirections in the factor graph implementation for
the sake of user-friendly abstractions. DMLL’s GPU imple-
mentation is limited by the random memory accesses into
the factor graph, which greatly reduces the achievable band-
width.

7. Conclusion
In this paper we introduced the Distributed Multiloop Lan-
guage (DMLL), an intermediate language based on common
parallel patterns that enables targeting heterogeneous dis-
tributed hardware from a rich implicitly parallel program-
ming model. We showed straightforward analyses for par-
titioning data structures and powerful transformations for
restructuring applications to target heterogeneous devices.
We presented experimental results across multiple applica-
tion domains and hardware platforms demonstrating that this
model is sufficient to generate optimized target-specific im-
plementations that are within 25% of hand-optimized C++
and greatly exceed the performance of explicitly distributed
versions in other high-level frameworks. We demonstrated
speedups of up to 11x over PowerGraph and 40x over Spark.

Acknowledgments
We are grateful to the anonymous reviewers for their com-
ments and suggestions. This work is supported by DARPA
Contract-Air Force, Xgraphs; Language and Algorithms for
Heterogeneous Graph Streams, FA8750-12-2-0335; Army
Contract AHPCRC W911NF-07-2-0027-1; NSF Grant, BIG-
DATA: Mid-Scale: DA: Collaborative Research: Genomes
Galore - Core Techniques, Libraries, and Domain Specific
Languages for High-Throughput DNA Sequencing, IIS-
1247701; NSF Grant, SHF: Large: Domain Specific Lan-
guage Infrastructure for Biological Simulation Software,
CCF-1111943; Dept. of Energy- Pacific Northwest National
Lab (PNNL)- Integrated Compiler and Runtime Autotuning
Infrastructure for Power, Energy and Resilience-Subcontract
108845; NSF Grant- EAGER- XPS:DSD:Synthesizing Do-
main Specific Systems-CCF-1337375; Stanford PPL affil-
iates program, Pervasive Parallelism Lab: Oracle, AMD,
Huawei, Intel, NVIDIA, SAP Labs. Authors also acknowl-
edge additional support from Oracle. The views and conclu-
sions contained herein are those of the authors and should
not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of
DARPA or the U.S. Government.

References
[1] Livejournal social network. http://snap.stanford.edu/

data/soc-LiveJournal1.html.

[2] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah. Lime:
a Java-compatible and synthesizable language for heteroge-
neous architectures. OOPSLA. ACM, 2010.

[3] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and
C. Bastoul. The polyhedral model is more widely applicable
than you think. Springer Verlag, 2010.

[4] G. E. Blelloch. Programming parallel algorithms. Commun.
ACM, 1996. doi: http://doi.acm.org/10.1145/227234.227246.

[5] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayap-
pan. A practical automatic polyhedral program optimization
system. 2008.

[6] M. Bravenboer, A. van Dam, K. Olmos, and E. Visser. Pro-
gram transformation with scoped dynamic rewrite rules. Fun-
dam. Inf., 69:123–178, July 2005. ISSN 0169-2968.

[7] K. J. Brown, A. K. Sujeeth, H. Lee, T. Rompf, H. Chafi,
M. Odersky, and K. Olukotun. A heterogeneous parallel
framework for domain-specific languages. PACT, 2011.

[8] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry,
R. Bradshaw, and N. Weizenbaum. Flumejava: easy, efficient
data-parallel pipelines. PLDI. ACM, 2010. ISBN 978-1-4503-
0019-3.

[9] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. SIG-
PLAN Not., 2005.

[10] C. Click and K. D. Cooper. Combining analyses, combining
optimizations. ACM Trans. Program. Lang. Syst., 17:181–
196, March 1995. ISSN 0164-0925.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, OSDI, pages 137–
150, 2004.

[12] C. Dubach, P. Cheng, R. Rabbah, D. F. Bacon, and S. J. Fink.
Compiling a high-level language for GPUs: (via language
support for architectures and compilers). PLDI ’12, 2012.

[13] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on natu-
ral graphs. In OSDI, 2012.

[14] T. Grosser, A. Groesslinger, and C. Lengauer. Polly: per-
forming polyhedral optimizations on a low-level intermediate
representation. Parallel Processing Letters, 22(04):1250010,
2012.

[15] J. Hoberock and N. Bell. Thrust: C++ template library for
CUDA, 2009.

[16] S. Hong, S. Salihoglu, J. Widom, and K. Olukotun. Simpli-
fying scalable graph processing with a domain-specific lan-
guage. CGO, 2014.

[17] C.-C. Huang, Q. Chen, Z. Wang, R. Power, J. Ortiz, J. Li, and
Z. Xiao. Spartan: A distributed array framework with smart
tiling. USENIX Association, 2015.

[18] M. Isard and Y. Yu. Distributed data-parallel computing using
a high-level programming language. SIGMOD. ACM, 2009.

[19] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. EuroSys. ACM, 2007.

[20] S. L. P. Jones, R. Leshchinskiy, G. Keller, and M. M. T.
Chakravarty. Harnessing the multicores: Nested data paral-
lelism in Haskell. In FSTTCS, pages 383–414, 2008.

[21] H. Lee, K. J. Brown, A. K. Sujeeth, T. Rompf, and K. Oluko-
tun. Locality-aware mapping of nested parallel patterns on
gpus. IEEE Micro, 2014.

[22] S. Lerner, D. Grove, and C. Chambers. Composing dataflow
analyses and transformations. SIGPLAN Not., 37:270–282,
January 2002. ISSN 0362-1340.

[23] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale
graph processing. SIGMOD ’10. ACM, 2010.

[24] B. L. Massingill, T. G. Mattson, and B. A. Sanders. A pattern
language for parallel application programs. In Euro-Par 2000
Parallel Processing, pages 678–681. Springer, 2000.

[25] F. McSherry, M. Isard, and D. G. Murray. Scalability! but at
what cost?

[26] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infras-
tructure for graph analytics. SOSP ’13, 2013.

[27] F. Niu, B. Recht, C. Ré, and S. J. Wright. Hogwild!: A lock-
free approach to parallelizing stochastic gradient descent. Ad-
vances in Neural Information Processing Systems, 24:693–
701, 2011.

[28] F. Niu, C. Zhang, C. Ré, and J. W. Shavlik. Deepdive: Web-
scale knowledge-base construction using statistical learning
and inference. VLDS, 12:25–28, 2012.

[29] A. Prokopec, P. Bagwell, and T. R. abd Martin Odersky. A
generic parallel collection framework. Euro-Par, 2010.

[30] T. Rompf, A. K. Sujeeth, N. Amin, K. Brown, V. Jovanovic,
H. Lee, M. Jonnalagedda, K. Olukotun, and M. Odersky. Op-
timizing data structures in high-level programs. POPL, 2013.

[31] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fet-
terly. Dandelion: a compiler and runtime for heterogeneous
systems. ACM, 2013.

[32] A. K. Sujeeth, T. Rompf, K. J. Brown, H. Lee, H. Chafi,
V. Popic, M. Wu, A. Prokopec, V. Jovanovic, M. Odersky, and
K. Olukotun. Composition and reuse with compiled domain-
specific languages. ECOOP, 2013.

[33] T. L. Veldhuizen and J. G. Siek. Combining optimizations,
combining theories. Technical report, Indiana University,
2008.

[34] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez,
C. Tenllado, and F. Catthoor. Polyhedral parallel code gener-
ation for CUDA. ACM Trans. Archit. Code Optim., 9(4), Jan.
2013.

[35] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. Franklin, S. Shenker, and I. Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. NSDI, 2011.

[36] C. Zhang and C. Ré. Dimmwitted: A study of main-memory
statistical analytics. Proceedings of the VLDB Endowment,
2014.

http://snap.stanford.edu/data/soc-LiveJournal1.html
http://snap.stanford.edu/data/soc-LiveJournal1.html

	Introduction
	Related Work
	Locality-Enhancing Transformations
	The Distributed Multiloop Language
	Nested Pattern Transformations

	Distribution Analysis and Optimization
	Partitioning Analysis
	Read Stencil Analysis and Transformations
	Sequential Operations

	Data Structure Optimization and Runtime
	Experimental Results
	NUMA Scalability
	Heterogeneous Clusters
	Application Case Study: Gibbs Sampling

	Conclusion

