Skip to main content Skip to secondary navigation

CIFAR10 Inference

Main content start
 Submission DateModel1-example Latency (milliseconds)10,000 batch classification cost (USD)Max AccuracyHardwareFramework

Nov 2019

ResNet8

ModelArts Service of Huawei Cloud

source

0.1345N/A94.20%Huawei Cloud [pi2.2xlarge.4]ModelArts-AIBOX + TensorRT

Apr 2019

BaiduNet8 using PyTorch JIT in C++

Baidu USA GAIT LEOPARD team: Baopu Li, Zhiyu Cheng, Jiazhuo Wang, Haofeng Kou, Yingze Bao

source

0.6830$0.0094.32%Baidu Cloud Tesla V100*1/60 GB/12 CPUPyTorch v1.0.1 and PaddlePaddle

Nov 2018

Custom ResNet 9 using PyTorch JIT in C++

Laurent Mazare

source

0.8280N/A94.53%1 P100 / 128 GB / 16 CPUPyTorch v1.0.0.dev20181116

Oct 2019

Kakao Brain Custom ResNet9 using PyTorch JIT in python

clint@KakaoBrain

source

0.8570N/A94.23%Tesla V100 * 1 GPU / 488 GB / 56 CPU (Kakao Brain BrainCloud)PyTorch 1.1.0

Oct 2017

ResNet 56

Stanford DAWN

source

9.7843$0.0294.09%1 K80 / 61 GB / 4 CPU (Amazon EC2 [p2.xlarge])PyTorch v0.1.12

Mar 2019

ResNet 164 (without bottleneck)

Ryan

source

23.3871N/A94.10%1 P100 / 384 GB / 48 CPU (x86_64 architecture machine)TensorFlow v1.2

Oct 2017

ResNet 164 (with bottleneck)

Stanford DAWN

source

24.6291N/A94.97%1 P100 / 512 GB / 56 CPU (DAWN Internal Cluster)PyTorch v0.1.12

Oct 2017

ResNet 164 (without bottleneck)

Stanford DAWN

source

24.9200$0.0494.04%60 GB / 16 CPU (Google Cloud [n1-standard-16])TensorFlow v1.2

Oct 2017

ResNet 164 (without bottleneck)

Stanford DAWN

source

25.2188N/A94.46%1 P100 / 512 GB / 56 CPU (DAWN Internal Cluster)PyTorch v0.1.12

Oct 2017

ResNet 164 (with bottleneck)

Stanford DAWN

source

28.1000N/A94.46%1 P100 / 512 GB / 56 CPU (DAWN Internal Cluster)TensorFlow v1.2

Oct 2017

ResNet 164 (without bottleneck)

Stanford DAWN

source

28.3201$0.0794.49%1 K80 / 61 GB / 4 CPU (Amazon EC2 [p2.xlarge])PyTorch v0.1.12

Oct 2017

ResNet 164 (with bottleneck)

Stanford DAWN

source

28.6880$0.0794.97%1 K80 / 61 GB / 4 CPU (Amazon EC2 [p2.xlarge])PyTorch v0.1.12

Oct 2017

ResNet 164 (with bottleneck)

Stanford DAWN

source

31.1300$0.0594.58%60 GB / 16 CPU (Google Cloud [n1-standard-16])TensorFlow v1.2

Oct 2017

ResNet 164 (with bottleneck)

Stanford DAWN

source

31.3490$0.0894.94%1 K80 / 30 GB / 8 CPU (Google Cloud)PyTorch v0.1.12

Oct 2017

ResNet 164 (without bottleneck)

Stanford DAWN

source

31.7121$0.0994.39%1 K80 / 30 GB / 8 CPU (Google Cloud)PyTorch v0.1.12

Oct 2017

ResNet 164 (without bottleneck)

Stanford DAWN

source

35.4519N/A94.19%1 P100 / 512 GB / 56 CPU (DAWN Internal Cluster)TensorFlow v1.2

Oct 2017

ResNet 164 (with bottleneck)

Stanford DAWN

source

38.5826$0.1094.58%1 K80 / 61 GB / 4 CPU (Amazon EC2 [p2.xlarge])TensorFlow v1.2

Oct 2017

ResNet 164 (with bottleneck)

Stanford DAWN

source

44.1859$0.1294.45%1 K80 / 30 GB / 8 CPU (Google Cloud)TensorFlow v1.2

Oct 2017

ResNet 164 (without bottleneck)

Stanford DAWN

source

58.9259$0.1694.31%1 K80 / 30 GB / 8 CPU (Google Cloud)TensorFlow v1.2

Oct 2017

ResNet 164 (with bottleneck)

Stanford DAWN

source

75.3522$0.1195.01%60 GB / 16 CPU (Google Cloud [n1-standard-16])PyTorch v0.1.12

Oct 2017

ResNet 164 (without bottleneck)

Stanford DAWN

source

85.8511$0.1394.48%60 GB / 16 CPU (Google Cloud [n1-standard-16])PyTorch v0.1.12