DAWNBench

An End-to-End Deep Learning Benchmark and Competition

CIFAR10 Inference

Submission Date Model 1-example Latency (milliseconds) 10,000 batch classification cost (USD) Max Accuracy Hardware Framework

Oct 2017

ResNet 164 (with bottleneck)

Stanford DAWN

source

31.1300 $0.05 94.58% 60 GB / 16 CPU (Google Cloud [n1-standard-16]) TensorFlow v1.2

Oct 2017

ResNet 164 (with bottleneck)

Stanford DAWN

source

44.1859 $0.12 94.45% 1 K80 / 30 GB / 8 CPU (Google Cloud) TensorFlow v1.2

Oct 2017

ResNet 164 (with bottleneck)

Stanford DAWN

source

28.1000 N/A 94.46% 1 P100 / 512 GB / 56 CPU (DAWN Internal Cluster) TensorFlow v1.2

Nov 2018

Custom ResNet 9 using PyTorch JIT in C++

Laurent Mazare

source

0.8280 N/A 94.53% 1 P100 / 128 GB / 16 CPU PyTorch v1.0.0.dev20181116

Oct 2017

ResNet 164 (with bottleneck)

Stanford DAWN

source

75.3522 $0.11 95.01% 60 GB / 16 CPU (Google Cloud [n1-standard-16]) PyTorch v0.1.12

Oct 2017

ResNet 164 (without bottleneck)

Stanford DAWN

source

25.2188 N/A 94.46% 1 P100 / 512 GB / 56 CPU (DAWN Internal Cluster) PyTorch v0.1.12

Oct 2017

ResNet 164 (without bottleneck)

Stanford DAWN

source

28.3201 $0.07 94.49% 1 K80 / 61 GB / 4 CPU (Amazon EC2 [p2.xlarge]) PyTorch v0.1.12

Oct 2017

ResNet 164 (with bottleneck)

Stanford DAWN

source

38.5826 $0.10 94.58% 1 K80 / 61 GB / 4 CPU (Amazon EC2 [p2.xlarge]) TensorFlow v1.2

Oct 2017

ResNet 164 (with bottleneck)

Stanford DAWN

source

31.3490 $0.08 94.94% 1 K80 / 30 GB / 8 CPU (Google Cloud) PyTorch v0.1.12

Oct 2017

ResNet 56

Stanford DAWN

source

9.7843 $0.02 94.09% 1 K80 / 61 GB / 4 CPU (Amazon EC2 [p2.xlarge]) PyTorch v0.1.12

Oct 2017

ResNet 164 (with bottleneck)

Stanford DAWN

source

24.6291 N/A 94.97% 1 P100 / 512 GB / 56 CPU (DAWN Internal Cluster) PyTorch v0.1.12

Oct 2017

ResNet 164 (without bottleneck)

Stanford DAWN

source

85.8511 $0.13 94.48% 60 GB / 16 CPU (Google Cloud [n1-standard-16]) PyTorch v0.1.12

Oct 2017

ResNet 164 (with bottleneck)

Stanford DAWN

source

28.6880 $0.07 94.97% 1 K80 / 61 GB / 4 CPU (Amazon EC2 [p2.xlarge]) PyTorch v0.1.12

Oct 2017

ResNet 164 (without bottleneck)

Stanford DAWN

source

24.9200 $0.04 94.04% 60 GB / 16 CPU (Google Cloud [n1-standard-16]) TensorFlow v1.2

Oct 2017

ResNet 164 (without bottleneck)

Stanford DAWN

source

31.7121 $0.09 94.39% 1 K80 / 30 GB / 8 CPU (Google Cloud) PyTorch v0.1.12

Oct 2017

ResNet 164 (without bottleneck)

Stanford DAWN

source

35.4519 N/A 94.19% 1 P100 / 512 GB / 56 CPU (DAWN Internal Cluster) TensorFlow v1.2

Oct 2017

ResNet 164 (without bottleneck)

Stanford DAWN

source

58.9259 $0.16 94.31% 1 K80 / 30 GB / 8 CPU (Google Cloud) TensorFlow v1.2
Disclosure: The Stanford DAWN research project is a five-year industrial affiliates program at Stanford University and is financially supported in part by founding members including Intel, Microsoft, NEC, Teradata, VMWare, and Google. For more information, including information regarding Stanford’s policies on openness in research and policies affecting industrial affiliates program membership, please see DAWN's membership page.