
Finding Heavily-Weighted Features in Data Streams

Kai Sheng Tai, Vatsal Sharan, Peter Bailis, Gregory Valiant

{kst, vsharan, pbailis, valiant}@cs.stanford.edu
Stanford University

Abstract

We introduce a new sub-linear space data structure—the Weight-Median Sketch—that captures the
most heavily weighted features in linear classifiers trained over data streams. This enables memory-
limited execution of several statistical analyses over streams, including online feature selection, streaming
data explanation, relative deltoid detection, and streaming estimation of pointwise mutual information.
In contrast with related sketches that capture the most commonly occurring features (or items) in a
data stream, the Weight-Median Sketch captures the features that are most discriminative of one stream
(or class) compared to another. The Weight-Median sketch adopts the core data structure used in
the Count-Sketch, but, instead of sketching counts, it captures sketched gradient updates to the model
parameters. We provide a theoretical analysis of this approach that establishes recovery guarantees in
the online learning setting, and demonstrate substantial empirical improvements in accuracy-memory
trade-offs over alternatives, including count-based sketches and feature hashing.

1 Introduction

With the rapid growth of streaming data volumes, memory-efficient sketches are an increasingly-important
workhorse in analytics tasks including finding frequent items (Charikar et al., 2002; Cormode and Muthukr-
ishnan, 2005b; Metwally et al., 2005; Larsen et al., 2016), estimating quantiles (Greenwald and Khanna, 2001;
Luo et al., 2016), and approximating the number of distinct items (Flajolet, 1985). Sketching algorithms
compute approximations of these analyses in exchange for significant reductions in memory utilization; there-
fore, they are well-suited to settings where highly-accurate estimation is not essential, or where practitioners
wish to trade off between memory usage and approximation accuracy (Boykin et al., 2014; Yu et al., 2013).
These properties make sketches a natural fit for stream processing applications where it is infeasible to store
the entire stream in memory.

Simultaneously, a wide range of streaming analytics workloads can be formulated as machine learning
problems over streaming data. For example, in streaming data explanation (Bailis et al., 2017; Meliou et al.,
2014), analyses seek to differentiate between subpopulations in the data—for example, between an inlier
class and an outlier class, as determined by some metric of interest. In network monitoring, analyses seek
to identify significant relative differences between streams of network traffic (Cormode and Muthukrishnan,
2005a) such as in detecting destinations that are substantially more popular on one link versus another.
In natural language processing on text streams, several applications require the identification of strongly-
associated groups of tokens (Durme and Lall, 2009)—this pertains more broadly to the problem of identifying
groups of events which tend to co occur. In the language of machine learning, these tasks can all be framed
as instances of streaming classification between two or more classes of interest, followed by the interpretation
of the learned model in order to identify the features that are the most discriminative between the classes.

In streaming classification applications such as the above, we can identify several key desiderata:

Low Memory. An emerging application domain for ML systems is in running training and inference on
resource-constrained mobile and Internet of Things (IoT) devices (Kumar et al., 2017; Gupta et al., 2017). A
widely-deployed example is the Arduino Uno Rev3 board, which operates with 2KB of onboard SRAM and
32KB of flash memory; predictive models operating in these settings must therefore contend with strict limits
on model size. The use of on-device models is not limited to simply performing prediction with a pre-trained
model; it is often desirable to support model updates in these memory-limited environments as well. For
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Figure 1: Streaming updates to a sketched classifier with approximations of the most heavily-weighted
features.

instance, an on-device model can be updated “in the field” on the basis of input data streams like local sensor
readings. Even in the traditional setting of stream processing on commodity servers, memory-constrained
techniques can be useful for processing a large number of distinct streams on a single node.

Model Interpretability. In the stream processing applications described earlier, the goal is not solely
to achieve high classification accuracy, but also to identify important features in the learned model, where
each feature corresponds to items or attributes in the data stream. Learned model weights can themselves
be a useful output of the learning process; a model trained to discriminate between two classes can yield
actionable information regarding the attributes most characteristic of each subpopulation. While “model
interpretability” is a broadly construed term in the literature (Lipton, 2016), in this work we consider the
specific task of identifying the largest-magnitude weights in the model; intuitively, this corresponds to identi-
fying which features are most influential towards making model predictions. Beyond the above applications,
the identification of influential features in a learned model is relevant to issues in feature selection (Zhang
et al., 2016), fairness (Corbett-Davies et al., 2017), model trustworthiness (Ribeiro et al., 2016), and legally-
mandated rights to explanation in scenarios involving algorithmic decision-making (Goodman and Flaxman,
2016).

Fast Updates. The high throughput requirements of modern stream analytics necessitate the use of
models that support fast inference and update times. For example, network traffic monitoring requires
methods that support updates at line rates.

Existing sketch-based methods may seem to be attractive building-blocks for developing streaming clas-
sification systems that satisfy these requirements. However, as we show, simple adaptations of existing
sketch algorithms can fail to capture influential features in the model. For example, a heavy-hitters algo-
rithm (Cormode and Hadjieleftheriou, 2008) will identify frequently-occurring features, but these features are
not necessarily the most discriminative features between classes—a simple instance of this failure is when the
most frequent features are statistically independent of the class variable. On the other hand, online learning
algorithms with sparsity-inducing regularization impose only soft constraints on memory usage, and it is
difficult to a priori select a regularization parameter to satisfy hard memory constraints without strong
assumptions on the data. Thus, existing methods are not fully satisfactory for our target applications.

In response, we develop new small-space algorithms for finding heavily-weighted features in data streams.
In this paper, we formalize the problem by introducing the Heavy-Weights problem as a generalization
of the well-studied Heavy-Hitters problem. We introduce a new sketch algorithm for the Heavy-Weights
problem—the Weight-Median Sketch—that solves this problem for streaming linear classification using space
logarithmic in the feature dimension. This sketch can be applied in many of the previously-mentioned stream
analytics workloads, including: (i) online feature selection, (ii) streaming data explanation, (iii) detecting
large relative differences in data streams (i.e., relative deltoids (Cormode and Muthukrishnan, 2005a)), and
(iv) streaming estimation of highly-correlated pairs of items via pointwise mutual information (Durme and
Lall, 2009).

The key intuition behind the Weight-Median Sketch is that by sketching the gradient updates to a linear
classifier, we can incrementally maintain a compressed version of the true, high-dimensional model that sup-
ports efficient approximate recovery of the model weights. In particular, the Weight-Median Sketch maintains
a linear projection of the weight vector of the linear classifier, similar to how a Count-Sketch (Charikar et al.,
2002) maintains a sketch of a vector of frequency counts. Unlike heavy-hitters sketches that simply increment
or decrement counters, the Weight-Median Sketch updates its state using online gradient descent (Hazan
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et al., 2016). Since these updates themselves depend on the current weight estimates, a careful analysis is
needed to ensure that the estimated weights do not diverge from the true model parameters over the course of
multiple online updates. In this paper, we provide theoretical guarantees on the approximation error of these
weight estimates. Additionally, in extensive experiments over real data, we show that the Weight-Median
Sketch outperforms alternative approaches, including those based on tracking the most frequent features,
truncation-based techniques, and feature hashing. For example, on the standard Reuters RCV1 binary clas-
sification benchmark, the Weight-Median Sketch recovers the most heavily-weighted features in the model
with 4× better approximation error than a baseline using the Space Saving heavy-hitters algorithm and 10×
better than a näıve weight truncation baseline, while using the same amount of memory.

To summarize, we make the following contributions in this work:

• We introduce the Weight-Median Sketch, a new sketch for identifying heavily-weighted features in
linear classifiers over data streams.

• We provide a theoretical analysis of the Weight-Median Sketch that provides guarantees on the accuracy
of the sketch estimates. In particular, we show that for feature dimension d and with success probability
1 − δ, we can learn a compressed model of dimension O

(
ε−4 log3(d/δ)

)
that supports approximate

recovery of the optimal weight vector w∗, where the absolute error of each weight is bounded above by
ε‖w∗‖1. For a given input vector x, this structure can be updated in time O

(
ε−2 log2(d/δ) · nnz(x)

)
.

• We present optimizations to the basic Weight-Median Sketch—in particular, using an active set of
features—to improve both weight recovery and classification accuracy.

• We demonstrate that the Weight-Median Sketch empirically outperforms several alternatives in terms
of memory-accuracy trade-offs across a range of real-world datasets.

2 Preliminaries

In this section, we present our problem description as well as several theoretical concepts that we draw upon
in our design and analysis of the Weight-Median Sketch.

Conventions and Notation. We denote all vector quantities by bolded lowercase letters, w. The notation
wi or [w]i (where appropriate for clarity) denotes the ith element of w. The notation [n] denotes the set

{1, . . . , n}. We write p-norms as ‖w‖p, where the p-norm of w is defined as
(∑d

i=1 |wi|p
)1/p

.

2.1 The Heavy-Weights Problem

The well-studied ε-approximate Heavy-Hitters problem can be defined as follows:

Definition 1. (Cormode and Hadjieleftheriou, 2008) Given a stream of n items, let ni denote the count of
item i over the stream. Given any φ > 0, the ε-approximate Heavy-Hitters problem is to return a set of items
S such that for all i ∈ S, ni ≥ (φ− ε)n, and there is no i 6∈ S such that ni ≥ φn.

We formalize the Heavy-Weights problem as the analog of the Heavy-Hitters problem for general opti-
mization problems where a unique solution exists. As is typical in the Heavy-Hitters formulation, we allow
for an arbitrary approximation factor ε > 0.

Definition 2. ((ε, p)-Approximate Heavy-Weights Problem) For any function L : X → R, X ⊆ Rd for
which a unique minimizer exists, define w∗ = arg minw L(w). Given any φ > 0, the (ε, p)-approximate
Heavy-Weights problem is to return a set S ⊆ [d] such that for all i ∈ S, |[w∗]i| ≥ (φ − ε)‖w∗‖p, and there
is no i 6∈ S such that |[w∗]i| ≥ φ‖w∗‖p.

The function L represents an objective or cost to be minimized. Note that the familiar Heavy-Hitters
problem can be posed as an optimization problem with the following objective: L(w) = −wTx, subject to
‖w‖1 ≤ n, where x is the vector of true counts with ‖x‖1 = n and mini xi > 0. This objective is minimized
by w∗ = x. Therefore, the ε-approximate Heavy-Hitters problem is a special case of the (ε, 1)-approximate
Heavy-Weights problem.

We can also define the related Weight Estimation problem:
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Definition 3. ((ε, p)-Approximate Weight Estimation Problem) For any function L : X → R, X ⊆ Rd for
which a unique minimizer exists, define w∗ = arg minw L(w). The (ε, p)-approximate Weight Estimation
problem is to return a value ŵi, for any i ∈ [d], such that |ŵi − [w∗]i| ≤ ε‖w∗‖p.

If ‖w∗‖p is known, an algorithm that solves the Weight Estimation problem also solves the Heavy-Weights
problem, since we can simply enumerate all weights i ∈ [d] and output those for which ŵi ≥ (φ−ε)‖w∗‖p. In
practice, it is often more convenient to work in terms of retrieving estimates of the top-K weights of w∗ in
absolute value; this formulation is equivalent to the ε-approximate Heavy-Weights problem for some implicit
value of φ. Note that if we have an algorithm that solves the (ε, p)-approximate Weight Estimation problem
and are given an upper bound ‖w∗‖p ≤ B, we can retrieve a set—possibly of size > K—that is guaranteed
to contain the top-K weights using the following procedure: enumerate the weight estimates ŵi and return
those whose range [ŵi − εB, ŵi + εB] intersects with the top-K set.

2.2 Heavy-Weights in Linear Classifiers

The Heavy-Weights and Weight Estimation problems defined above are extremely broad as they concern
general optimization problems. In this paper, we specialize to the class of objectives corresponding to
binary classification with `2-regularized linear models. As we show in our subsequent exploration of specific
applications (Sec. 6), this model family is sufficiently expressive to capture a variety of applications in stream
processing, including streaming feature selection, data explanation, relative deltoid detection, and pointwise
mutual information estimation.

We consider a binary1 linear classifier parameterized2 by vector w ∈ Rd. Given an input feature vector
x ∈ Rd, the classifier outputs a prediction ŷ ∈ {−1,+1} as:

ŷ = sign
(
wTx

)
.

Given that T > 0 examples have been observed in the stream, define the loss L as the following:

L(w) =
1

T

T∑
t=1

`
(
ytw

Txt
)

+
λ

2
‖w‖22,

where {(xt, yt)}Tt=1 is the set of examples observed in the stream so far, `(·) is a convex, differentiable
function of its argument and λ > 0 controls the strength of `2-regularization. The choice of `(·) defines
the linear classification model to be used. For example, the logistic loss `(ξ) = log(1 + exp(−ξ)) defines
logistic regression, and smoothed versions of the hinge loss `(ξ) = max{0, 1 − ξ} define close relatives of
linear support vector machines. Our goal is to obtain good estimates of w∗, the optimal weight vector in
hindsight over the T observed examples.

We consider the online learning setting where the model weights are updated over a series of rounds
t = 1, 2, . . . , T . In each round, we update the model weights via the following process:

1. Receive an input (xt, yt).

2. Incur loss Lt(wt) = `
(
ytw

T
t xt

)
+ λ

2 ‖wt‖22.

3. Update state wt to wt+1.

The online learning literature describes numerous update rules for selecting the next state wt+1 given the
current state wt. For concreteness, we specify our algorithms to perform updates with online gradient descent
(OGD) (Hazan et al., 2016; Chp. 3), which uses the following update rule:

wt+1 = wt − ηt∇Lt(wt),

where ηt > 0 is the learning rate at step t. OGD enjoys the advantages of simplicity and minimal space
requirements (needing to maintain only a representation of the weight vector wt and a global scalar learning

1In Sec. 8, we describe an extension to the multiclass setting using a standard reduction to binary classification.
2In the following, we assume linear classifiers with no bias term for simplicity, but it is straightforward to extend our methods

to the nonzero bias case.
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rate), but may be suboptimal given the particular structure of the problem. Generalizations to other online
learning algorithms are straightforward.

Clearly, if we were to explicitly maintain the weight vector wt at each step, both the Heavy-Weights
problem and the Weight Estimation problem would be trivial to solve. The challenge is the following: is it
possible to maintain, for each time step, a compact summary zt ∈ Rk, where k � d, that supports efficient
recovery of the highest-magnitude weights in the model? In the following sections, we will show that in
a restricted online setting where the order in which the examples (xt, yt) are observed is non-adversarial,
there exists an algorithm using O

(
ε−4polylog(d)

)
space that solves the (ε, 1)-approximate Weight Estimation

problem.

2.3 Relevant Background

At its core, our proposed method combines techniques from (1) online learning, (2) sketching, and (3) norm-
preserving embeddings via random projections. In the previous section, we gave a brief overview of online
learning. Here, we present the relevant background for areas (2) and (3).

Count-Sketch. The Count-Sketch (Charikar et al., 2002) is a linear projection of a vector w ∈ Rd that
supports efficient approximate recovery of the entries of w. For a given size k and depth s, the Count-Sketch
algorithm maintains a collection of s hash tables, each with width k/s (see Fig. 2). Each i ∈ [d] is assigned a
random bucket hj(i) in table j along with a random sign σj(i). Increments to each coordinate i are multiplied
by σj(i) added to the corresponding buckets hj(i). The estimator for the ith coordinate is the median of the
values in the assigned buckets multiplied by the corresponding sign flips. Charikar et al. (2002) showed the
following recovery guarantee:

Figure 2: An illustration of the Count-Sketch with depth s and width k/s. Each feature hashes to s locations,
multiplied by a random ±1 sign.

Lemma 1. (Charikar et al., 2002) Let vcs be the Count-Sketch estimate of the vector v. For any vector v,
with probability 1− δ, a Count-Sketch matrix with width Θ(1/ε2) and depth Θ(log(d/δ)) satisfies

‖v − vcs‖∞ ≤ ε‖v‖2.

This result implies that the Count-Sketch solves the ε-approximate Heavy-Hitters problem.

Johnson-Lindenstrauss (JL) property. A random projection matrix is said to have the Johnson-
Lindenstrauss (JL) property (Johnson and Lindenstrauss, 1984) if it preserves the norm of a vector with
high probability:

Definition 4. A random matrix R ∈ Rk×d has the JL property with error ε and failure probability δ if for
any given x ∈ Rd, we have with probability 1− δ:∣∣∣‖Rx‖2 − ‖x‖2

∣∣∣ ≤ ε‖x‖2.
The JL property holds for dense matrices with independent Gaussian or Bernoulli entries (Achlioptas,

2003), and recent work has shown that it applies to certain sparse matrices as well (Kane and Nelson, 2014).
Intuitively, JL matrices preserve the geometry of a set of points, and we leverage this key fact to ensure that
we can still recover the original solution after projecting to low dimension.

5



3 Finding Heavily-Weighted Features

In this section, we present the Weight-Median Sketch for identifying heavily-weighted features in linear
classifiers. First, for intuition and comparison, we describe a number of simple baseline methods based
on maintaining a K-sparse weight vector at each iteration. The first two are based on truncating the
weight vector to its largest-magnitude components; the next two are extensions of streaming heavy-hitters
algorithms. We subsequently describe our new sketch-based approaches for finding heavily-weighted features.

3.1 Baseline Methods

Simple Truncation. Given a budget of K weights, a natural baseline method is to simply truncate w
after each update to the K entries with highest absolute value, setting all other entries to zero. The simple
truncation baseline is similar to the truncated Perceptron algorithm proposed by Hoi et al. (Hoi et al., 2012).
We give a pseudocode description in Appendix B.

Probabilistic Truncation. A problem with the simple truncation method is that it may end up “stuck”
with a bad set of weights: a “good” index that would have been included in the top-K set by the unconstrained
classifier may fail to be included in the feature set under Alg. 3 if its gradient updates are insufficiently large
relative to the smallest weight in the set; this results in the weight being repeatedly zeroed-out in each
iteration. To remedy this problem, we can instead adopt a randomized approach where indices are accepted
into the K-sparse set with probability proportional to the magnitude of their weights. Therefore, even if
some feature has small but nonzero weight after an update, there is still a positive probability that it is
accepted into the feature set. This “probabilistic truncation” algorithm is inspired by weighted reservoir
sampling (Efraimidis and Spirakis, 2006). We give the pseudocode in Appendix B.

Count-Min Frequent Features. The Count-Min sketch (Cormode and Muthukrishnan, 2005b) is a
commonly-used method for finding frequent items in data streams. This baseline uses a Count-Min sketch
to identify the K most frequently-occurring features; the weights for these frequent features are maintained,
while the remaining weights are set to 0.

Space Saving Frequent Features. This method is identical to the previous approach except for the use
of the Space Saving algorithm (Metwally et al., 2005) in place of the Count-Min sketch for frequent item
estimation. The Space Saving algorithm has previously been found to emprically outperform Count-Min in
insertion-only settings such as ours (Cormode and Hadjieleftheriou, 2008).

3.2 Weight-Median Sketch

We propose a new algorithm—the Weight-Median Sketch (WM-Sketch)—for the problem of identifying
heavily-weighted features. The main data structure in the WM-Sketch is identical to that used in the
Count-Sketch. The sketch is parameterized by size k, depth s, and width k/s. We initialize the sketch with
a size-k array set to zero. For a given depth s, we view this array as being arranged in s rows, each of width
k/s (assume that k is a multiple of s). We denote this array as z, and equivalently view it as a vector in Rk.

The high-level idea is that each row of the sketch is a compressed version of the model weight vector
w ∈ Rd, where each index i ∈ [d] is mapped to some assigned bucket j ∈ [k/s]. Since k/s � d, there will
be many collisions between these weights; therefore, we maintain s rows—each with different assignments of
features to buckets—in order to disambiguate weights.

Hashing Features to Buckets. In order to avoid explicitly storing these mappings, which would require
space linear in d, we implement the feature-to-bucket maps using hash functions. For each row j ∈ [s], we
maintain a pair of hash functions, hj : [d]→ [k/s] and σj : [d]→ {−1,+1}. We now explain how these hash
functions are used to update and query the sketch.

Updates. Suppose an update ∆i ∈ R to weight wi of the ith feature is given. We apply this update using
the following procedure: for each row j ∈ [s], add the value σj(i) · ∆i to bucket hj(i) in the row. Let the
matrix A ∈ {−1,+1}k×d denote the map implicitly represented by the hash functions hj and σj . We can

then write the update ∆̃ to z as ∆̃ = A∆.
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Algorithm 1: Weight-Median (WM) Sketch

input: size k, depth s, loss function `, `2-regularization parameter λ, learning rate schedule ηt
initialization

z← s× k/s array of zeroes
Sample Count-Sketch matrix A
t← 0

function Update(x, y)
τ ← 1

sz
TAx . Prediction for x

z← (1− ληt)z− ηty∇` (yτ)Ax
t← t+ 1

function Query(i)
return output of Count-Sketch retrieval on z

Instead of being provided the updates ∆, we must compute them as a function of the input example
(x, y) and the sketch state z. Given the loss function `, we define the update to z as the online gradient
descent update for the sketched example (Ax, y) where we first make a prediction τ , and then compute the
gradient of the loss at this value:

τ =
1

s
zTAx

∆̃ = −ηy∇` (yτ)Ax,

where η > 0 is the learning rate.
To build intuition, it is helpful to compare this update to the Count-Sketch update rule (Charikar et al.,

2002). In the heavy-hitters setting, the input x is a one-hot encoding for the item seen in that time step.
The update to the Count-Sketch state zcs is the following:

∆̃cs = Ax,

where A is defined identically as above. Therefore, our update rule is simply the Count-Sketch update scaled
by the constant −ηy∇`(yzTAx/s). However, an important detail to note is that the Count-Sketch update
is independent of the sketch state zcs, whereas the WM-Sketch update does depend on z. This cyclical
dependency between the state and state updates is the main challenge in our analysis of the WM-Sketch.

Queries. To obtain an estimate ŵi of the ith weight, we return the median of the values σj(i) · zj,hj(i) for
j ∈ [s]. This is identical to the query procedure for the Count-Sketch.

We summarize the update and query procedures for the WM-Sketch in Algorithm 1. In the next section,
we show how the sketch size k and depth s parameters can be chosen to satisfy an ε approximation guarantee
with failure probability δ over the randomness in the sketch matrix.

Efficient Weight Decay. It is important that `2-regularization can be applied efficiently on the sketch
state z of size k. A näıve implementation that scales each entry in z by (1− ηtλ) in each iteration incurs an
update cost of O(k+ s ·nnz(x)), which masks the computational gains that can be realized when x is sparse.
Here, we use a standard trick (Shalev-Shwartz et al., 2011): we maintain a global scale parameter α that scales
the sketch values z. Initially, α = 1 and we update α← (1−ηtλ)α to implement weight decay over the entire
feature vector. Our weight estimates are therefore scaled by α: ŵi = median

{
ασj(i) · zj,hj(i) : j ∈ [s]

}
. This

optimization reduces the cost of each sketch update from O(k + s · nnz(x)) to O(s · nnz(x)).

Hash Functions and Independence. Our analysis of the WM-Sketch requires hash functions that
are O(log(d/δ))-wise independent. In comparison, the Count-Sketch requires 2-independent hashing. While
hash functions satisfying this level of independence can be constructed using polynomial hashing (Carter
and Wegman, 1977), hashing each input value would require time O(log(d/δ)), which can be costly when
the dimension d is large. Instead of satisfying the full independence requirement, our implementation simply
uses fast, 3-wise independent tabulation hashing (P?traşcu and Thorup, 2012). In our experiments (Sec. 5),
we did not observe any significant degradation in performance from this choice of hash function, which is
consistent with empirical results in other hashing applications that the degree of independence does not
significantly impact performance on real-world data (Mitzenmacher and Vadhan, 2008).
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3.3 Active-Set Weight-Median Sketch

Algorithm 2: Active-Set Weight-Median (AWM) Sketch

initialization
S ← {} . Empty heap

function Update(x, y)
xs ← {xi : i ∈ S} . Features in heap
xwm ← {xi : i 6∈ S} . Features in sketch

τ ←
∑
i∈S S[i] · xi + 1

sz
TAxwm . Prediction for x

S ← (1− ληt)S − ηty∇`(yτ)xs . Heap update
z← (1− ληt)z . Apply regularization
for i 6∈ S do

. Either update i in sketch or move to heap
w̃ ← Query(i)− ηtyxi∇`(yτ)
imin ← arg minj(|S[j]|)
if |w̃| > |S[imin]| then

Remove imin from S
Add i to S with weight w̃
Update imin in sketch with S[imin]− Query(imin)

else
Update i in sketch with ηtyxi∇`(yτ)

t← t+ 1

We now describe a simple, heuristic extension to the WM-Sketch that significantly improves the recovery
accuracy of the sketch in practice. We refer to this variant as the Active-Set Weight-Median Sketch (AWM-
Sketch).

To efficiently track the top elements across sketch updates, we can use a min-heap ordered by the absolute
value of the estimated weights. This technique is also used alongside heavy-hitters sketches to identify the
most frequent items in the stream (Charikar et al., 2002). In the basic WM-Sketch, the heap merely functions
as a mechanism to passively maintain the heaviest weights. This baseline scheme can be improved by noting
that weights that are already stored in the heap need not be tracked in the sketch; instead, the sketch can
be updated lazily only when the weight is evicted from the heap. This heuristic has previously been used in
the context of improving count estimates derived from a Count-Min Sketch (Roy et al., 2016). The intuition
here is the following: since we are already maintaining a heap of heavy items, we can utilize this structure
to reduce error in the sketch as a result of collisions with heavy items.

The heap can be thought of as an “active set” of high-magnitude weights, while the sketch estimates
the contribution of the tail of the weight vector. Since the weights in the heap are represented exactly, this
active set heuristic should intuitively yield better estimates of the heavily-weighted features in the model.

As a general note, similar coarse-to-fine approximation schemes have been proposed in other online
learning settings. A similar scheme for memory-constrained sparse linear regression was analyzed by Stein-
hardt and Duchi (2015). Their algorithm similarly uses a Count-Sketch for approximating weights, but in a
different setting (K-sparse linear regression) and with a different update policy for the active set.

4 Analysis

We derive bounds on the recovery error achieved by the WM-Sketch for given settings of the size k and depth
s. The main challenge in our analysis is that the updates to the sketch depend on gradient estimates which
in turn depend on the state of the sketch. This reflexive dependence makes it difficult to straightforwardly
transplant the standard analysis for the Count-Sketch to our setting. Instead, we turn to ideas drawn
from norm-preserving random projections and online convex optimization. In this section, we begin with
an analysis of recovery error in the batch setting, where we are given access to a fixed dataset of size T
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consisting of the first T examples observed in the stream and are allowed multiple passes over the data.
Subsequently, we use this result to show guarantees in a restricted online case where we are only allowed a
single pass through the data, but with the assumption that the order of the data is not chosen adversarially.

4.1 Batch Setting

To begin, we briefly outline the main ideas in our analysis. With high probability, we can sample a random
projection to dimension k � d that satisfies the JL norm preservation property (Definition 4). We use this
property to show that for any fixed dataset of size T , optimizing a projected version of the objective yields
a solution that is close to the projection of the minimizer of the original, high-dimensional objective. We
then use the observation that our JL map can be identified as a Count-Sketch projection; therefore, we can
make use of existing error bounds for Count-Sketch estimates to bound the error of our recovered weight
estimates.

Let R ∈ Rk×d denote the sketching matrix implicitly defined by the hashing construction described in
Algorithm 1, scaled by 1/

√
s: R = 1√

s
A. This is the hashing-based sparse JL projection proposed by Kane

and Nelson (Kane and Nelson, 2014). We consider the following pair of objectives defined over the batch of
T observed examples (xt, yt)—the first defines the problem in the original space and the second defines the
corresponding problem where the learner observes sketched examples (Rxt, yt):

L(w) =
1

T

T∑
t=1

`
(
ytw

Txt
)

+
λ

2
‖w‖22,

L̂(z) =
1

T

T∑
t=1

`
(
ytz

TRxt
)

+
λ

2
‖z‖22,

with parameters w ∈ Rd and z ∈ Rk.
Suppose we optimized these objectives to obtain solutions w∗ = arg minw L(w) and z∗ = arg minz L̂(z).

How then does w∗ relate to z∗ given our choice of sketching matrix R and regularization parameter λ?
Intuitively, if we stored all the data observed up to time T and optimized z over this dataset, we should hope
that the optimal solution z∗ is close to Rw∗, the sketch of w∗, in order to have any chance of recovering
the largest weights of w∗. We show that in this batch setting, ‖z∗ −Rw∗‖2 is indeed small; we then use
this property to show element-wise error guarantees for the Count-Sketch recovery process. We first define
a useful regularity condition on functions:

Definition 5. A function f : X → R is β-strongly smooth w.r.t. a norm ‖·‖ if f is everywhere differentiable
and if for all x,y we have:

f(y) ≤ f(x) + (y − x)T∇f(x) +
β

2
‖y − x‖2.

We now state our main result for recovery error in the batch setting:

Theorem 1. Let the loss function ` be β-strongly smooth (w.r.t. ‖ · ‖2) and maxt ‖xt‖1 = γ. For fixed
constants C1, C2 > 0, let:

k =
(
C1/ε

4
)

log3(d/δ) max
{

1, β2γ4/λ2
}
,

s =
(
C2/ε

2
)

log2(d/δ) max
{

1, βγ2/λ
}
.

Let w∗ be the minimizer of the original objective function L(w) and west be the estimate of w∗ returned by
performing Count-Sketch recovery on the minimizer z∗ of the projected objective function L̂(z). Then with
probability 1− δ over the choice of R,

‖w∗ −west‖∞ ≤ ε‖w∗‖1.

We defer the full proof to Appendix A.1 but briefly discuss some salient properties of this recovery result.
First, the feature dimension d enters only polylogarithmically into the sketch size k and the sparsity (i.e.,

9



depth) parameter s: this establishes that memory-efficient learning and recovery is possible when in the
high-d regime that we are interested in. Moreover, our result is independent of the number of examples T ;
this is relevant as our applications involve learning over streams and datasets containing possibly millions
of examples. For standard loss functions such as the logistic loss and the smoothed hinge loss, we have
smoothness parameter β = 1. Finally, k and s scale inversely with the strength of `2 regularization: this
is intuitive because additional regularization will shrink both w∗ and z∗ towards zero. We observe this
inverse relationship between recovery error and `2 regularization in practice (see Fig. 5). Also, note that the
recovery error depends on the maximum `1-norm γ of the data points xt, and the bound is most optimistic
when γ is small. Across all of the applications we consider in Section 5 and Section 6, the data points are
sparse with a small `1-norm, and hence the bound is meaningful across a number of interesting settings.

The per-parameter recovery error in Theorem 1 is bounded above by a multiple of the `1-norm of the
optimal weights w∗ for the uncompressed problem. This supports the intuition that sparse solutions with
small `1-norm should be more easily recovered. In practice, we can augment the objective with an additional
‖w‖1 (resp. ‖z‖1) term to induce sparsity; this corresponds to elastic net-style composite `1/`2 regularization
on the parameters of the model (Zou and Hastie, 2005).

4.2 Online Setting

We now provide guarantees for WM-Sketch in the online setting. We make two small modifications to
WM-Sketch for the convenience of analysis. First, we assume that the iterate zt is projected onto a `2
ball of radius D at every step. Second, we also assume that we perform the final Count-Sketch recovery
on the average z̄ = 1

T

∑T
i=1 zt of the weight vectors, instead of on the current iterate zt. While using this

averaged sketch is useful for the analysis, maintaining a duplicate data structure in practice for the purpose
of accumulating the average would double the space cost of our method. Therefore, in our implementation
of the WM-Sketch, we simply maintain the current iterate zt. As we show in the next section this approach
achieves good performance on real-world datasets, in particular when combined with the active set heuristic.

Our guarantee holds in expectation over uniformly random permutations of {(x1, y1), . . . , (xT , yT )}. In
other words, we achieve low recovery error on average over all orderings in which the T data points could
have been presented. We believe this condition is necessary to avoid worst-case adversarial orderings of
the data points—since the WM-Sketch update at any time step depends on the state of the sketch itself,
adversarial orderings can potentially lead to high error accumulation.

Theorem 2. Let the loss function ` be β-strongly smooth (w.r.t. ‖ · ‖2), and have its derivative bounded by
H. Assume ‖xt‖2 ≤ 1,maxt ‖xt‖1 = γ, ‖w∗‖2 ≤ D2 and ‖w∗‖1 ≤ D1. Let G be a bound on the `2 norm of
the gradient at any time step t, in our case G ≤ H(1 + εγ) + λD. For fixed constants C1, C2, C3 > 0, let:

k =
(
C1/ε

4
)

log3(d/δ) max
{

1, β2γ4/λ2
}
,

s =
(
C2/ε

2
)

log2(d/δ) max
{

1, βγ2/λ
}
,

T ≥ (C3/ε
4)ζ log2(d/δ) max{1, βγ2/λ},

where ζ = (1/λ2)(D2/ ‖w∗‖1)2(G+ (1 + εγ)H)2. Let w∗ be the minimizer of the original objective function
L(w) and wwm be the estimate w∗ returned by the WM-Sketch algorithm with averaging and projection on
the `2 ball with radius D = (D2 + εD1). Then with probability 1− δ over the choice of R,

E[‖w∗ −wwm‖∞] ≤ ε‖w∗‖1,

where the expectation is taken with respect to uniformly sampling a permutation in which the samples are
received.

Again, we defer the full proof to Appendix A.2.

Remark. Let us compare the guarantees for finding heavy-hitters in data streams with our guarantees for
finding heavily-weighted features in data streams. The Count-Sketch uses Θ(ε−2 log(d/δ)) space to obtain
frequency estimates vcs with error ‖v − vcs‖∞ ≤ ε‖v‖2, where v is the true frequency vector (Lemma 6),
while the Count-Min Sketch uses Θ

(
ε−1 log(d/δ)

)
space for error bounded by ε‖v‖1 (Cormode and Muthukr-

ishnan, 2005b). In comparison, we use space O
(
ε−4 log3(d/δ)

)
to achieve error E[‖w∗ −wwm‖∞] ≤ ε‖w∗‖1
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Dataset # Examples # Features Space (MB)

Reuters RCV1 6.77× 105 4.72× 104 0.4
Malicious URLs 2.40× 106 3.23× 106 25.8
KDD Cup Algebra 8.41× 106 2.02× 107 161.8

Senate/House Spend. 4.08× 107 5.14× 105 4.2
Packet Trace 1.86× 107 1.26× 105 1.0
Newswire 2.06× 109 4.69× 107 375.2

Table 1: Summary of benchmark datasets with the space cost of representing full weight vectors and feature
identifiers using 32-bit values. The first set of three consists of standard binary classification datasets used
in Sec. 5; the second set consists of datasets specific to the applications in Sec. 6.

(Theorem 2). Thus, we obtain a guarantee of a similar flavor to bounds for heavy-hitters for this more
general framework, but with somewhat worse polynomial dependencies.

5 Evaluation

In this section, we evaluate the Weight-Median Sketch on three standard binary classification datasets. Our
goal here is to compare the WM-Sketch and AWM-Sketch against alternative limited-memory methods in
terms of (1) recovery error in the estimated top-K weights, (2) classification error rate, and (3) runtime
performance. In the next section, we explore specific applications of the WM-Sketch in stream processing
tasks.

5.1 Datasets and Experimental Setup

We evaluated our proposed sketches on several standard benchmark datasets as well as in the context of
specific streaming applications. Table 1 lists summary statistics for these datasets.

Classification Datasets. We evaluate the recovery error on `2-regularized online logistic regression
trained on three standard binary classification datasets: Reuters RCV1 (Lewis et al., 2004), malicious URL
identification (Ma et al., 2009), and the Algebra dataset from the KDD Cup 2010 large-scale data mining
competition (Stamper et al., 2010; Yu et al., 2010). We use the standard training split for each dataset
except for the RCV1 dataset, where we use the larger “test” split as is common in experimental evaluations
using this dataset (Golovin et al., 2013).

For each dataset, we make a single pass through the set of examples. Across all our experiments, we
use an initial learning rate η0 = 0.1 and λ ∈ {10−3, 10−4, 10−5, 10−6}. We used the following set of space
constraints: 2KB, 4KB, 8KB, 16KB and 32KB. For each setting of the space budget and for each method,
we evaluate a range of configurations compatible with that space constraint; for example, for evaluating the
WM-Sketch, this corresponds to varying the space allocated to the heap and the sketch, as well as trading off
between the sketch depth s and the width k/s. For each setting, we run 10 independent trials with distinct
random seeds; our plots show medians and the range between the worst and best run.

Memory Cost Model. In our experiments, we control for memory usage and configure each method to
satisfy the given space constraints using the following cost model: we charge 4B of memory utilization for
each feature identifier, feature weight, and auxiliary weight (e.g., random keys in Algorithm 4 or counts in
the Space Saving baseline) used. For example, a simple truncation instance (Algorithm 3) with 128 entries
uses 128 identifiers and 128 weights, corresponding to a memory cost of 1024B.

11
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Figure 3: Relative `2 error of estimated top-K weights vs. true top-K weights for `2-regularized logistic
regression under 8KB memory budget. Shaded area indicates range of errors observed over 10 trials. The
AWM-Sketch achieves lower recovery error across all three datasets.
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Figure 4: Relative `2 error of estimated top-K weights on RCV1 dataset under different memory budgets
(λ = 10−6). Shaded area indicates range of errors observed over 10 trials. The recovery quality of the
AWM-Sketch quickly improves with more allocated space.

5.2 Recovery Error Comparison

We measure the accuracy to which our methods are able to recover the top-K weights in the model using
the following relative `2 error metric:

RelErr(wK ,w∗) =
‖wK −w∗‖2
‖wK
∗ −w∗‖2

,

where wK is the K-sparse vector representing the top-K weights returned by a given method, w∗ is the
weight vector obtained by the uncompressed model, and wK

∗ is the K-sparse vector representing the true
top-K weights in w∗. The relative error metric is therefore bounded below by 1 and quantifies the relative
suboptimality of the estimated top-K weights. The best configurations for the WM- and AWM-Sketch on
RCV1 are listed in Table 2; the optimal configurations for the remaining datasets are similar.

We compare our methods across datasets (Fig. 3) and across memory constraints on a single dataset
(Fig. 4). For clarity, we omit the Count-Min Frequent Features baseline since we found that the Space
Saving baseline achieved consistently better performance. We found that the AWM-Sketch consistently
achieved lower recovery error than alternative methods on our benchmark datasets. The Space Saving
baseline is competitive on RCV1 but underperforms the simple Probabilistic Truncation baseline on URL: this
demonstrates that tracking frequent features can be effective if frequently-occurring features are also highly
discriminative, but this property does not hold across all datasets. Standard feature hashing achieves poor
recovery error since colliding features cannot be disambiguated.

In Fig. 5, we compare recovery error on RCV1 across different settings of λ. Higher `2-regularization
results in less recovery error since both the true weights and the sketched weights are closer to 0; however,
λ settings that are too high can result in increased classification error.

5.3 Classification Error Rate

We evaluated the classification performance of our models by measuring their online error rate (Blum et al.,
1999): for each observed pair (xt, yt), we record whether the prediction ŷt (made without observing yt) is
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WM-Sketch AWM-Sketch

Budget (KB) |S| width depth |S| width depth

2 128 128 2 128 256 1
4 256 256 2 256 512 1
8 128 128 14 512 1024 1
16 128 128 30 1024 2048 1
32 128 256 31 2048 4096 1

Table 2: Sketch configurations with minimal `2 recovery error on RCV1 dataset (|S| denotes heap capacity).
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Figure 5: Relative `2 error of top-K AWM-Sketch estimates with varying regularization parameter λ on
RCV1 and URL datasets under 8KB memory budget.
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Figure 6: Online classification error rates with `2-regularized logistic regression under different memory
budgets (Trun = Simple Truncation, PTrun = Probabilistic Truncation, SS = Space Saving Frequent, Hash
= Feature Hashing, LR = Logistic Regression without memory constraints). The AWM-Sketch consistently
achieves better classification accuracy than methods that track frequent features.
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Figure 7: Normalized runtime of each method vs. memory-unconstrained logistic regression on RCV1 using
configurations that minimize recovery error (see Table 2). The right panel is a zoomed-in view of the left
panel.

correct before updating the model. The error rate is defined as the cumulative number of mistakes made
divided by the number of iterations. Our results here are summarized in Fig. 6. For each dataset, we used the
value of λ that achieved the lowest error rate across all our memory-limited methods. For each method and
for each memory budget, we chose the configuration that achieved the lowest error rate. For the WM-Sketch,
this corresponded to a width of 27 or 28 with depth scaling proportionally with the memory budget; for the
AWM-Sketch, the configuration that uniformly performed best allocated half the space to the active set and
the remainder to a depth-1 sketch (i.e., a single hash table without any replication).

We found that across all tested memory constraints, the AWM-Sketch consistently achieved lower error
rate than heavy-hitter-based methods. Surprisingly, the AWM-Sketch outperformed feature hashing by a
small but consistent margin: 0.5–3.7% on RCV1, 0.1–0.4% on URL, and 0.2–0.5% on KDDA, with larger gains
seen at smaller memory budgets. This suggests that the AWM-Sketch benefits from the precise representation
of the largest, most-influential weights in the model, and that these gains are sufficient to offset the increased
collision rate due to the smaller hash table. The Space Saving baseline exhibited inconsistent performance
across the three datasets, demonstrating that tracking the most frequent features is an unreliable heuristic:
features that occur frequently are not necessarily the most predictive. We note that higher values of the
regularization parameter λ correspond to greater penalization of rarely-occurring features; therefore, we
would expect the Space Saving baseline to better approximate the performance of the unconstrained classifier
as λ increases.

5.4 Runtime Performance

We evaluated runtime performance relative to a memory unconstrained logistic regression model using the
same configurations as those chosen to minimize `2 recovery error (Table 2). In all our timing experiments,
we ran our implementations of the baseline methods, the WM-Sketch, and the AWM-Sketch on Intel Xeon
E5-2690 v4 processor with 35MB cache using a single core. The memory-unconstrained logistic regression
weights were stored using an array of 32-bit floating point values of size equal to the dimensionality of the
feature space, with the highest-weighted features tracked using a min-heap of size K = 128; reads and writes
to the weight vector therefore required single array accesses. The remaining methods tracked heavy weights
alongside 32-bit feature identifiers using a min-heap sized according to the corresponding configuration.

In our experiments, the fastest method was feature hashing, with about a 2x overhead over the baseline.
This overhead was due to the additional hashing step needed for each read and write to a feature index. The
AWM-Sketch incurred an additional 2x overhead over feature hashing due to more frequent heap maintenance
operations.
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Figure 8: Distribution of relative risks among top-2048 features retrieved by each method. Top Row : Heavy-
Hitters. Bottom Row : Classifier-based methods.

6 Applications

We now show that a variety of tasks in stream processing can be framed as memory-constrained classification.
The unifying theme between these applications is that classification is a useful abstraction whenever the
use case calls for discriminating between streams or between subpopulations of a stream. These distinct
classes can be identified by partitioning a single stream into quantiles (Sec. 6.1), comparing separate streams
(Sec. 6.2), or even by generating synthetic examples to be distinguished from real samples (Sec. 6.3).

6.1 Streaming Explanation

In data analysis workflows, it is often necessary to identify characteristic attributes that are particularly
indicative of a given subset of data (Meliou et al., 2014). For example, in order to diagnose the cause of
anomalous readings in a sensor network, it is helpful to identify common features of the outlier points such
as geographical location or time of day. This use case has motivated the development of methods for finding
common properties of outliers found in aggregation queries (Wu and Madden, 2013) and in data streams
(Bailis et al., 2017).

This task can be framed as a classification problem: assign positive labels to the outliers and negative
labels to the inliers, then train a classifier to discriminate between the two classes. The identification
of characteristic attributes is then reduced to the problem of identifying heavily-weighted features in the
trained model. In order to identify indicative conjunctions of attributes, we can simply augment the feature
space to include arbitrary combinations of singleton features.

The relative risk or risk ratio rx = p(y = 1 | x = 1)/p(y = 1 | x = 0) is a statistical measure of the relative
occurrence of the positive label y = 1 when the feature x is active versus when it is inactive. In the context
of stream processing, the relative risk has been used to quantify the degree to which a particular attribute or
attribute combination is indicative of a data point being an outlier relative to the overall population (Bailis
et al., 2017). Here, we are interested in comparing our classifier-based approach to identifying high-risk
features against the approach used in MacroBase (Bailis et al., 2017), an existing system for explaining
outliers over streams, that identifies candidate attributes using a variant of the Space Saving heavy-hitters
algorithm.

Experimental Setup. We used a publicly-available dataset of itemized disbursements by candidates in
U.S. House and Senate races from 2010–2016.3 The outlier points were set to be the set of disbursements

3FEC candidate disbursements data: http://classic.fec.gov/data/CandidateDisbursement.do
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Figure 9: Correlation between top-2048 feature weights and relative risk. Left : Memory-unconstrained
logistic regression (Pearson correlation 0.95). Right : AWM-Sketch (Pearson correlation 0.91).

in the top-20% by dollar amount. For each row of the data, we generated a sequence of 1-sparse feature
vectors4 corresponding to the observed attributes. We set a space budget of 32KB for the AWM-Sketch.

Results. Our results are summarized in Figs. 8 and 9. The former empirically demonstrates that the
heuristic of filtering features on the basis of frequency can be suboptimal for a fixed memory budget. This is
due to features that are frequent in both the inlier and outlier classes: it is wasteful to maintain counts for
these items since they have low relative risk. In Fig. 8, the top row shows the distribution of relative risks
among the most frequent items within the positive class (left) and across both classes (right). In contrast,
our classifier-based approaches use the allocated space more efficiently by identifying features at the extremes
of the relative risk scale.

In Fig. 9, we show that the learned classifier weights are strongly correlated with the relative risk values
estimated from true counts. Indeed, logistic regression weights can be interpreted in terms of log odds ratios,
a related quantity to relative risk. These results show that the AWM-Sketch is a superior filter compared to
Heavy-Hitters approaches for identifying high-risk features.

6.2 Network Monitoring

IP network monitoring is one of the primary application domains for sketches and other small-space summary
methods (Venkataraman et al., 2005; Bandi et al., 2007; Yu et al., 2013). Here, we focus on the problem of
finding packet-level features (for instance, source/destination IP addresses and prefixes, port numbers, net-
work protocols, and header or payload characteristics) that differ significantly in relative frequency between
a pair of network links.

This problem of identifying significant relative differences—also known as relative deltoids—was studied
by Cormode and Muthukrishnan (Cormode and Muthukrishnan, 2005a). Concretely, the problem is to
estimate—for each item i—ratios φ(i) = n1(i)/n2(i) (where n1, n2 denote occurrence counts in each stream)
and to identify those items i for which this ratio, or its reciprocal, is large. Here, we are interested in
identifying differences between traffic streams that are observed concurrently ; in contrast, the empirical
evaluation in (Cormode and Muthukrishnan, 2005a) focused on comparisons between different time periods.

Experimental Setup. We used a subset of an anonymized, publicly-available passive traffic trace dataset
recorded at a peering link for a large ISP (cai). The positive class was the stream of outbound source IP
addresses and the negative class was the stream of inbound destination IP addresses. We compared against
several baseline methods, including ratio estimation using a pair of Count-Min sketches (as in (Cormode
and Muthukrishnan, 2005a)). For each method we retrieved the top-2048 features (i.e., IP addresses in this
case) and computed the recall against the set of features above the given ratio threshold, where the reference
ratios were computed using exact counts.

Results. We found that the AWM-Sketch performed comparably to the memory-unconstrained logistic

4We can also generate a single feature vector per row (with sparsity greater than 1), but the learned weights would then
correlate more weakly with the relative risk. This is due to the effect of correlations between features.
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Figure 10: Recall of IP addresses with relative occurrence ratio above the given threshold with 32KB of
space. LR denotes recall by full memory-unconstrained logistic regressor. CMx8 denotes Count-Min baseline
with 8x memory usage.

regression baseline on this benchmark. We significantly outperformed the paired Count-Min baseline by a
factor of over 4× in recall while using the same memory budget, as well as a paired CM baseline that was
allocated 8x the memory budget. These results indicate that linear classifiers can be used effectively to
identify relative deltoids over pairs of data streams.

6.3 Streaming Pointwise Mutual Information

Pointwise mutual information (PMI), a measure of the statistical correlation between a pair of events, is
defined as:

PMI(x, y) = log
p(x, y)

p(x)p(y)
.

Intuitively, positive values of the PMI indicate events that are positively correlated, negative values indicate
events that are negatively correlated, and a PMI of 0 indicates uncorrelated events.

In natural language processing, PMI is a frequently-used measure of word association (Turney and Pantel,
2010). Traditionally, the PMI is estimated using empirical counts of unigrams and bigrams obtained from
a text corpus. The key problem with this approach is that the number of bigrams in standard natural
language corpora can grow very large; for example, we found ∼47M unique co-occurring pairs of tokens in a
small subset of a standard newswire corpus. This combinatorial growth in the feature dimension is further
amplified when considering higher-order generalizations of PMI.

More generally, streaming PMI estimation can be used to detect pairs of events whose occurrences are
strongly correlated. For example, we can consider a streaming log monitoring use case where correlated
events are potentially indicative of cascading failures or trigger events resulting in exceptional behavior in
the system. Therefore, we expect that the techniques developed here should be useful beyond standard NLP
applications.

Sparse Online PMI Estimation. Streaming PMI estimation using approximate counting has previously
been studied (Durme and Lall, 2009); however, this approach has the drawback that memory usage still
scales linearly with the number of observed bigrams. Here, we explore streaming PMI estimation from a
different perspective: we pose a binary classification problem over the space of bigrams with the property
that the model weights asymptotically converge to an estimate of the PMI.5

The classification problem is set up as follows: in each iteration t, with probability 0.5 sample a bigram
(u, v) from the bigram distribution p(u, v) and set yt = +1; with probability 0.5 sample (u, v) from the
unigram product distribution p(u)p(v) and set yt = −1. The input xt is the 1-sparse vector where the index
corresponding to (u, v) is set to 1. We train a logistic regression model to discriminate between the true
and synthetic samples. If λ = 0, the model asymptotically converges to the distribution p̂(y = 1 | (u, v)) =
f(wuv) = p(u, v)/ (p(u, v) + p(u)p(v)) for all pairs (u, v), where f is the logistic function. It follows that

5This classification formulation is used in the popular word2vec skip-gram method for learning word embeddings (Mikolov
et al., 2013); the connection to PMI approximation was first observed by Levy and Goldberg (2014). To our knowledge, we are
the first to apply this formulation in the context of sparse PMI estimation.
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Pair PMI Est. Pair PMI

prime minister 6.339 7.609 , the 0.044
los angeles 7.197 7.047 the , -0.082
http / 6.734 7.001 the of 0.611
human rights 6.079 6.721 the . 0.057

Table 3: Left: Top recovered pairs with PMI computed from true counts and PMI estimated from model
weights (216 bins, 1.4MB total memory). Right: Most common pairs in corpus.
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Figure 11: Median frequencies and exact PMIs of retrieved pairs with Active-Set Weight-Median Sketch
estimation. Lower λ settings and higher bin counts favor less frequent pairs.

wuv = log(p(u, v)/p(u)p(v)), which is exactly the PMI of (u, v). If λ > 0, we obtain an estimate that is
biased, but with reduced variance in the estimates for rare bigrams.

Experimental Setup. We train on a subset of a standard newswire corpus (Chelba et al., 2013); the
subset contains 77.7M tokens, 605K unique unigrams and 47M unique bigrams over a sliding window of
size 6. In our implementation, we approximate sampling from the unigram distribution by sampling from a
reservoir sample of tokens (May et al., 2017; Kaji and Kobayashi, 2017). We estimated weights using the
AWM-Sketch with heap size 1024 and depth 1; the reservoir size was fixed at 4000. We make a single pass
through the dataset and generate 5 negative samples for every true sample. Strings were first hashed to
32-bit values using MurmurHash3;6 these identifiers were hashed again to obtain sketch bucket indices.

Results. For width settings up to 216, our implementation’s total memory usage was at most 1.4MB. In
this regime, memory usage was dominated by the storage of strings in the heap and the unigram reservoir.
For comparison, the standard approach to PMI estimation requires 188MB of space to store exact 32-bit
counts for all bigrams, excluding the space required for storing strings or the token indices corresponding
to each count. In Table 3, we show sample pairs retrieved by our method; the PMI values estimated from
exact counts are well-estimated by the classifier weights. In Fig. 11, we show that at small widths, the high
collision rate results in the retrieval of noisy, low-PMI pairs; as the width increases, we retrieve higher-PMI
pairs which typically occur with lower frequency. Further, regularization helps discard low-frequency pairs
but can result in the model missing out on high-PMI but less-frequent pairs.

7 Related Work

Heavy-Hitters in Data Streams. The Heavy-Hitters problem has been extensively studied in the
streaming algorithms literature. Given a sequence of items, the goal is to return the set of all items whose
frequency exceeds a specified fraction of the total number of items. Algorithms for finding frequent items
can be broadly categorized into counter-based approaches (Manku and Motwani, 2002; Demaine et al., 2002;
Karp et al., 2003; Metwally et al., 2005), quantile algorithms (Greenwald and Khanna, 2001; Shrivastava
et al., 2004), and sketch-based methods (Charikar et al., 2002; Cormode and Muthukrishnan, 2005b).

6https://github.com/aappleby/smhasher/wiki/MurmurHash3
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Mirylenka et al. (Mirylenka et al., 2015) develop streaming algorithms for finding conditional heavy-
hitters, where the goal is to identify items that are frequent in the context of a separate “parent” item.
While these methods can be used in related applications to ours, their counter-based algorithms differ
significantly from our classification-based approach.

Characterizing Changes in Data Streams. The problem of detecting and characterizing significant
absolute and relative differences between data streams has been studied by several authors. Cormode and
Muthukrishnan (2005a) proposed a Count-Min-based algorithm for identifying items whose occurrence rates
differ significantly; Schweller et al. (2004) propose reversible hashes in this context to avoid storing key
information. These approaches focus primarily on identifying differences between time periods, whereas we
focus on the case where streams are observed concurrently. In order to explain anomalous traffic flows,
Brauckhoff et al. (2012) proposed techniques using histogram-based detectors and association rules. Using
histograms to identify changes in feature occurrence is appropriate for detecting large absolute differences;
in contrast, we focus on detecting relative differences, a problem which has previously been found to be
challenging (Cormode and Muthukrishnan, 2005a).

Resource-Efficient ML. Gupta et al. (2017) and Kumar et al. (2017) explore the use of tree- and k-
nearest-neighbor-based classifiers on highly resource-constrained devices. A large body of work studies
resource-efficient inference at test time (Xu et al., 2012, 2013; Hsieh et al., 2014). Unlike budget kernel
methods (Crammer et al., 2004) that maintain a small set of support vectors, we aim to directly restrict
the number of parameters stored. Our work also differs from model compression or distillation, which aims
to imitate a large, expensive model using a smaller one with lower memory and computation costs (Bucilu?
et al., 2006; Ba and Caruana, 2014; Hinton et al., 2015).

Sparsity-Inducing Regularization. `1-regularization is a standard technique for encouraging parameter
sparsity in online learning (Langford et al., 2009; Duchi and Singer, 2009; Xiao, 2010; McMahan, 2011). In
practice, it is difficult to a priori select an `1 regularization strength in order to satisfy a given sparsity
budget; it can therefore be problematic to apply standard online learning methods in settings with hard
memory constraints. In this paper, we propose a different approach: we first fix a memory budget and then
use the allocated space to approximate a classifier, with the property that our approximation will be better
for parameter vectors with small `1-norm (see Theorem 2). We note that the WM-Sketch and AWM-Sketch
are compatible with the use of an `1-regularizer in addition to the requisite `2 term.

Feature Hashing. Feature hashing (Shi et al., 2009; Weinberger et al., 2009) is a technique where the
classifier is trained on features that have been hashed to a fixed-width table. This approach lowers memory
usage by reducing the dimension of the feature space and by obviating the need for storing feature identifiers,
but at the cost of model interpretability.

Compressed Learning. Calderbank et al. (Calderbank et al.) introduced compressed learning, where a
classifier is trained on data obtained via compressive sensing (Candes and Tao, 2006; Donoho, 2006). The
authors focus on classification performance in the compressed domain and do not consider the problem of
recovering weights in the original space.

8 Discussion

Active Set vs. Multiple Hashing. In the basic WM-Sketch, multiple hashing is needed in order to
disambiguate features that collide in a heavy bucket; we should expect that features with truly high weight
should correspond to large values in the majority of buckets that they hash to. The active set approach
uses a different mechanism for disambiguation. Suppose that all the features that hash to a heavy bucket
are added to the active set; we should expect that the weights for those features that were erroneously
added will eventually decay (due to `2-regularization) to the point that they are evicted from the active set.
Simultaneously, the truly high-weight features are retained in the active set. The AWM-Sketch can therefore
be interpreted as a variant of feature hashing where the highest-weighted features are not hashed.

The Cost of Interpretability. We initially motivated the development of the WM-Sketch with the dual
goals of memory-efficient learning and model interpretability. A natural question to ask is: what is the cost of
interpretability? What do we sacrifice in classification accuracy when we allocate memory to storing feature
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identifiers relative to feature hashing, which maintains only feature weights? A surprising finding in our
evaluation on standard binary classification datasets was that the AWM-Sketch achieved uniformly better
classification accuracy compared to feature hashing. We hypothesize that the observed gains are due to
reduced collisions with heavily-weighted features. This result suggests that in some cases, we can essentially
gain model interpretability for free.

Per-Feature Learning Rates. In previous work on online learning applications, practitioners have found
that the per-feature learning rates can significantly improve classification performance (McMahan et al.,
2013). An open question is whether variable learning rate across features is worth the associated memory
cost in the streaming setting.

Multiclass Classification. The WM-Sketch be extended to the multiclass setting using the following
simple extension. Given M output classes, for each row in the sketch, hash each feature using M independent
hash functions, thus maintaining M weights for each feature. In order to predict the output distribution,
evaluate the inner product of the feature vector with each set of weights and apply a softmax function to the
result. For large M , for instance in language modeling applications, this procedure can be computationally
expensive since update time scales linearly with M . In this regime, we can apply noise contrastive esti-
mation (Gutmann and Hyvärinen, 2010)—a standard reduction to binary classification—to learn the model
parameters.

Further Extensions. The WM-Sketch is likely amenable to further extensions that can improve update
time and further reduce memory usage. Our method is equivalent to online gradient descent using random
projections of input features, and gradient updates can be performed asynchronously with relaxed cache
coherence requirements between cores (Recht et al., 2011). Additionally, our methods are orthogonal to
reduced-precision techniques like randomized rounding (Raghavan and Tompson, 1987; Golovin et al., 2013)
and approximate counting (Flajolet, 1985); these methods can be used in combination to realize further
memory savings.

9 Conclusions

In this paper, we introduced the Weight-Median Sketch for the problem of identifying heavily-weighted
features in linear classifiers over streaming data. We showed theoretical guarantees for our method, drawing
on techniques from online learning and norm-preserving random projections. In our empirical evaluation, we
showed that the Active Set extension to the basic Weight-Median Sketch method is highly effective, achieving
superior weight recovery and competitive classification error compared to baseline methods across several
standard binary classification benchmarks. Finally, we explored promising applications of our methods
by framing existing stream processing tasks as classification problems. We believe this machine learning
perspective on sketch-based stream processing may prove to be a fruitful direction for future research in
advanced streaming analytics.
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Mihai P?traşcu and Mikkel Thorup. The power of simple tabulation hashing. Journal of the ACM (JACM),
59(3):14, 2012.

Prabhakar Raghavan and Clark D Tompson. Randomized rounding: a technique for provably good algorithms
and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to paral-
lelizing stochastic gradient descent. In Advances in neural information processing systems, pages 693–701,
2011.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?: Explaining the predictions
of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1135–1144. ACM, 2016.

23



Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented sketch: Faster and more accurate stream
processing. In Proceedings of the 2016 International Conference on Management of Data, pages 1449–
1463. ACM, 2016.

Robert Schweller, Ashish Gupta, Elliot Parsons, and Yan Chen. Reversible sketches for efficient and accurate
change detection over network data streams. In Proceedings of the 4th ACM SIGCOMM conference on
Internet measurement, pages 207–212. ACM, 2004.

Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Primal estimated sub-
gradient solver for svm. Mathematical programming, 127(1):3–30, 2011.

Ohad Shamir. Without-replacement sampling for stochastic gradient methods. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems 29, pages 46–54. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/

6245-without-replacement-sampling-for-stochastic-gradient-methods.pdf.

Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alexander L Strehl, Alex J Smola, and SVN
Vishwanathan. Hash kernels. In International Conference on Artificial Intelligence and Statistics, pages
496–503, 2009.

Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash Suri. Medians and beyond:
new aggregation techniques for sensor networks. In Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 239–249. ACM, 2004.

J. Stamper, A. Niculescu-Mizil, S. Ritter, G.J. Gordon, and K.R. Koedinger. Algebra i 2008-
2009. challenge data set from kdd cup 2010 educational data mining challenge., 2010. Find it at
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp.

Jacob Steinhardt and John Duchi. Minimax rates for memory-bounded sparse linear regression. In Conference
on Learning Theory, pages 1564–1587, 2015.

Peter D Turney and Patrick Pantel. From frequency to meaning: Vector space models of semantics. Journal
of artificial intelligence research, 37:141–188, 2010.

Shoba Venkataraman, Dawn Song, Phillip B Gibbons, and Avrim Blum. New streaming algorithms for fast
detection of superspreaders. Department of Electrical and Computing Engineering, page 6, 2005.

Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature hashing
for large scale multitask learning. In Proceedings of the 26th Annual International Conference on Machine
Learning, pages 1113–1120. ACM, 2009.

Eugene Wu and Samuel Madden. Scorpion: Explaining away outliers in aggregate queries. Proceedings of
the VLDB Endowment, 6(8):553–564, 2013.

Lin Xiao. Dual averaging methods for regularized stochastic learning and online optimization. Journal of
Machine Learning Research, 11(Oct):2543–2596, 2010.

Zhixiang Xu, Kilian Weinberger, and Olivier Chapelle. The greedy miser: Learning under test-time budgets.
arXiv preprint arXiv:1206.6451, 2012.

Zhixiang Xu, Matt Kusner, Kilian Weinberger, and Minmin Chen. Cost-sensitive tree of classifiers. In
International Conference on Machine Learning, pages 133–141, 2013.

Tianbao Yang, Lijun Zhang, Rong Jin, and Shenghuo Zhu. Theory of dual-sparse regularized randomized
reduction. In International Conference on Machine Learning, pages 305–314, 2015.

Hsiang-Fu Yu, Hung-Yi Lo, Hsun-Ping Hsieh, Jing-Kai Lou, Todd G McKenzie, Jung-Wei Chou, Po-Han
Chung, Chia-Hua Ho, Chun-Fu Chang, Yin-Hsuan Wei, et al. Feature engineering and classifier ensemble
for kdd cup 2010. In KDD Cup, 2010.

24

http://papers.nips.cc/paper/6245-without-replacement-sampling-for-stochastic-gradient-methods.pdf
http://papers.nips.cc/paper/6245-without-replacement-sampling-for-stochastic-gradient-methods.pdf


Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic measurement with opensketch. In NSDI,
volume 13, pages 29–42, 2013.
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A Proofs

A.1 Proof of Theorem 1

We will use the duals of L(w) and L̂(z) to show that z∗ is close to Rw∗. Some other works such as Zhang
et al. (2014) and Yang et al. (2015) have also attempted to analyze random projections via the dual, and
this has the advantage that the dual variables are often easier to compare, as they at least have the same
dimensionality. Note that Rw∗ is essentially the count-sketch projection of w∗, hence showing that z∗ is close
to Rw∗ will allow us to show that doing count-sketch recovery using z∗ is comparable to doing count-sketch
recovery from the projection of w∗ itself, and hence give us the desired error bounds. We first derive the
dual forms of the objective function L(w), the dual of L̂(z) can be derived analogously. Let ui = yiw

Txi.
Then we can write the primal as:

min
u,w

1

T

T∑
i=1

`(ui) +
λ

2
‖w‖22,

subject to ui = yiw
Txi, ∀ i ≤ T.

Define X̃i = yixi, i.e. the ith data point xi times its label. Let X̃ ∈ Rd×T be the matrix of data points such
that the ith column is X̃i. Let K = X̃T X̃ be the kernel matrix corresponding to the original data points.
Taking the Lagrangian, and minimizing with respect to the primal variables z and w gives us the following
dual objective function in terms of the dual variable α:

J(α) =
1

T

∑
i

`∗(αi) +
1

2λT 2
αTKα,

where `∗ is the Fenchel conjugate of `. Also, if α∗ is the minimizer of J(α), then the minimizer w∗ of L(w) is
given by w∗ = − 1

λT X̃α∗. Similarly, let K = X̃TRTRX̃ be the kernel matrix corresponding to the projected

data points. We can write down the dual L̂(α) of the projected primal objective function Ĵ(w) in terms of
the dual variable α̂ as follows:

Ĵ(α̂) =
1

T

∑
i

`∗(α̂i) +
1

2λT 2
α̂T K̂α̂.

As before, if α̂∗ is the minimizer of Ĵ(α̂), then the minimizer z∗ of L̂(z) is given by ŵ∗ = − 1
λTRX̃α̂∗. We

will first express the distance between z∗ and Rw∗ in terms of the distance between the dual variables. We
can write:

‖z∗ −Rw∗‖22 =
1

λ2T 2
‖RX̃α̂∗ −RX̃α∗‖22

=
1

λ2T 2
(α̂∗ − α∗)T K̂(α̂∗ − α∗). (1)
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Hence our goal will be to upper bound (α̂∗ − α∗)T K̂(α̂∗ − α∗). Define ∆ = 1
λT (K̂ −K)α∗. We will show

that (α̂∗ − α∗)T K̂(α̂∗ − α∗) can be upper bounded in terms of ∆ as follows.

Lemma 2.

1

λT 2
(α̂∗ − α∗)T K̂(α̂∗ − α∗) ≤

1

λT 2
(α∗ − α̂∗)T (K̂ −K)α∗

≤ 1

T
‖α̂∗ − α∗‖1‖∆‖∞.

Proof. We first claim that,

Ĵ(α∗) ≥ Ĵ(α̂∗) +
1

2λT 2
(α̂∗ − α∗)T K̂(α̂∗ − α∗). (2)

Note that Ĵ(α∗) ≥ Ĵ(α̂∗) just because α̂∗ is the minimizer of Ĵ(α̂), hence Eq. 2 is essentially giving an
improvement over this simple bound. In order to prove Eq. 2, define F (α) = 1

T

∑
i `
∗(αi). As F (α) is a

convex function (because `∗(x) is convex in x), from the definition of convexity,

F (α∗) ≥ F (α̂∗) + 〈∇F (α̂∗), α∗ − α̂∗〉. (3)

It is easy to verify that,

1

2λT 2
αT∗ K̂α∗ =

1

2λT 2
α̂T∗ K̂α̂∗ +

1

λT 2
(α∗ − α̂∗)T K̂α̂∗

+
1

2λT 2
(α̂∗ − α∗)T K̂(α̂∗ − α∗). (4)

Adding Eq. 3 and Eq. 4, we get,

Ĵ(α∗) ≥ Ĵ(α̂∗) + 〈∇F (α̂∗), α∗ − α̂∗〉+
1

λT 2
(α∗ − α̂∗)T K̂α̂∗

+
1

2λT 2
(α̂∗ − α∗)T K̂(α̂∗ − α∗)

= Ĵ(α̂∗) + 〈∇Ĵ(α̂∗), α∗ − α̂∗〉+
1

2λT 2
(α̂∗ − α∗)T K̂(α̂∗ − α∗)

= Ĵ(α̂∗) +
1

2λT 2
(α̂∗ − α∗)T K̂(α̂∗ − α∗),

which verifies Eq. 2. We can derive a similar bound for Ĵ(α̂∗),

Ĵ(α̂∗) ≥ Ĵ(α∗) + (α̂∗ − α∗)T∇Ĵ(α∗) +
1

2λT 2
(α̂∗ − α∗)T K̂(α̂∗ − α∗). (5)

As J(α) is minimized by α∗ and J(α) is convex,

(α̂∗ − α∗)T∇J(α∗) ≥ 0

=⇒ (α̂∗ − α∗)T (∇F (α∗) +
1

λT 2
Kα∗) ≥ 0

=⇒ (α̂∗ − α∗)T (∇Ĵ(α∗) +
1

λT 2
(K − K̂)α∗) ≥ 0

=⇒ (α̂∗ − α∗)T∇Ĵ(α∗) ≥
1

λT 2
(α̂∗ − α∗)T (K̂ −K)α∗. (6)

Using Eq. 6 in Eq. 5, we get,

Ĵ(α̂∗)− Ĵ(α∗) ≥
1

λT 2
(α̂∗ − α∗)T (K̂ −K)α∗

+
1

2λT 2
(α̂∗ − α∗)T K̂(α̂∗ − α∗).
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By Eq. 2, Ĵ(α̂∗)− Ĵ(α∗) ≤ − 1
2λT 2 (α̂∗ − α∗)T K̂(α̂∗ − α∗). Therefore we can write,

− 1

λT 2
(α̂∗ − α∗)T K̂(α̂∗ − α∗) ≥

1

λT 2
(α̂∗ − α∗)T (K̂ −K)α∗

=⇒ 1

λT 2
(α̂∗ − α∗)T K̂(α̂∗ − α∗) ≤

1

λT 2
(α∗ − α̂∗)T (K̂ −K)α∗.

To finish, by Holder’s inequality,

1

λT 2
(α∗ − α̂∗)T (K̂ −K)α∗ ≤

1

λT 2
‖α∗ − α̂∗)‖1

∥∥∥(K̂ −K)
∥∥∥
∞
α∗ =

1

T
‖α̂∗ − α∗‖1‖∆‖∞

Our next step is to upper bound ‖α̂∗ − α∗‖1 in terms of ‖∆‖∞ using the β-strongly smooth property of
`(z).

Lemma 3.
‖α̂∗ − α∗‖1 ≤ 2Tβ‖∆‖∞

Proof. We first claim that J(w) is 1/(Tβ)-strongly convex. Note that as `(ui) is β-strongly smooth, therefore,
`∗(αi) is 1/β-strongly convex. Therefore for any u and v,

`∗(ui) ≥ `∗(vi) + (ui − vi)∇`∗(vi) +
(ui − vi)2

2β

=⇒ 1

T

∑
i

`∗(ui) ≥
1

T

∑
i

`∗(vi) +
1

T
〈∇`∗(v),u− v〉

+
‖u− v‖22

2Tβ
.

Therefore F (α) = 1
T

∑
i `
∗(αi) is 1/(Tβ) strongly convex. Note that 1

2λT 2α
TKα is a convex function of α

as K = X̃T X̃ is a positive semidefinite matrix. Therefore J(α) = F (α) + 1
2λT 2α

TKα is 1/(Tβ) strongly

convex. It follows from the same reasoning that Ĵ(α̂) is also 1/(Tβ)-strongly convex.

By the definition of strong convexity,

Ĵ(α̂∗) ≥ Ĵ(α∗) + (α̂∗ − α∗)T∇Ĵ(α∗) +
1

2Tβ
‖α̂∗ − α∗‖22.

As α̂∗ is the minimizer of Ĵ(α), Ĵ(α̂∗) ≤ Ĵ(α∗). Therefore,

(α̂∗ − α∗)T∇Ĵ(α∗) +
1

2Tβ
‖α̂∗ − α∗‖22 ≤ Ĵ(α̂∗)− Ĵ(α∗) ≤ 0

=⇒ 1

2Tβ
‖α̂∗ − α∗‖22 ≤ −(α̂∗ − α∗)T∇Ĵ(α∗).

Using Eq. 6, we can rewrite this as,

1

2Tβ
‖α̂∗ − α∗‖22 ≤ −

1

λT 2
(α̂∗ − α∗)T (K̂ −K)α∗

≤ 1

T
‖α̂∗ − α∗‖1‖∆‖∞

=⇒ ‖α̂∗ − α∗‖22 ≤ 2β‖α̂∗ − α∗‖1‖∆‖∞.

By Cauchy-Schwartz,

‖α̂∗ − α∗‖21 ≤ T‖α̂∗ − α∗‖22
≤ 2Tβ‖α̂∗ − α∗‖1‖∆‖∞

=⇒ ‖α̂∗ − α∗‖1 ≤ 2Tβ‖∆‖∞.
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We now bound ‖∆‖∞. The result relies on the JL property of the projection matrix R (recall Definition
4). If R is a JL matrix with error ε and failure probability δ/d2, then with failure probability δ, for all
coordinate basis vectors {e1, . . . , ed},

‖Rei‖2 = 1± ε, ∀ i, |〈Rei, Rej〉| ≤ ε, ∀ i 6= j (7)

The first bound follows directly from the JL property, to derive the bound on the inner product, we rewrite
the inner product as follows,

4〈Rei, Rej〉 = ‖Rei +Rej‖22 − ‖Rei −Rej‖22.

The bound then follows by using the JL property for ‖Rei+Rej‖22 and ‖Rei−Rej‖22. As there are d2 pairs,
if the inner product is preserved for each pair with failure probability δ/d2, then by a union bound it is
preserved simultaneously for all of them with failure probability δ. Condition 7 is useful because it implies
that R approximately preserves the inner products and lengths of sparse vectors, as states in the following
Lemma—

Lemma 4. If condition 7 is satisfied, then for any two vectors v1 and v2,

|vT1 v2 − (Rv1)T (Rv2)| ≤ 2ε ‖v1‖1 ‖v2‖1 .

Proof. To verify, write v1 =
∑d
i=1 ψiei and v2 =

∑d
i=1 φiei. Then,

(Rv1)T (Rv2) =
( d∑
i=1

ψi(Rei)
T
)( d∑

j=1

φj(Rej)
)

=

d∑
i=1

ψiφi‖Rei‖22 +
∑
i 6=j

ψiφj(Rei)
T (Rej)

≤ (1 + ε)

d∑
i=1

ψiφi +
∑
i 6=j

|ψi||φj ||(Rei)
T (Rej)|

≤ (1 + ε)vT1 v2 + ε
∑
i 6=j

|ψi||φj | (using condition 7)

≤ vT1 v2 + ε‖v1‖2‖v2‖2 + ε
∑
i

|ψi|
∑
j

|φj |

≤ vT1 v2 + 2ε ‖v1‖1 ‖v2‖1 ,

where the last line is due to
∑
i |ψi| = ‖v1‖1 and ‖v1‖2 ≤ ‖v1‖1. By a similar argument, we can show that

(Rv1)T (Rv2)− vT1 v2 ≥ 2ε ‖v1‖1 ‖v2‖1. Hence for any two vectors v1 and v2,

|vT1 v2 − (Rv1)T (Rv2)| ≤ 2ε ‖v1‖1 ‖v2‖1 .

We can now bound ‖∆‖∞ using Lemma 4.

Lemma 5. If R satisfies condition 7 then,

‖∆‖∞ ≤ 2γε‖w∗‖1,

where γ = maxi ‖xi‖1.

Proof. We first rewrite ∆ as follows,

∆ =
1

λT
(X̃TRTRX̃ − X̃T X̃)α∗ =

1

λT
X̃T (RTR− I)X̃α∗

= X̃T (I −RTR)w∗,
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using the relation that w∗ = − 1
λT X̃α∗. Therefore,

‖∆‖∞ ≤ max
i
|xTi (I −RTR)w∗| = max

i
|xTi w∗ − (Rxi)

T (Rw∗)|

Using Lemma 4, it follows that,

‖∆‖∞ ≤ max
i
|xTi w∗ − (Rxi)

T (Rw∗)| ≤ 2εγ‖w∗‖1.

We will now combine Lemma 2, 3 and 5. By Eq. 1 and Lemma 2,

‖z∗ −Rw∗‖22 ≤
1

λT
‖α̂∗ − α∗‖1‖∆‖∞.

Combining this with Lemma 3,

‖z∗ −Rw∗‖22 ≤
2β

λ
‖∆‖2∞.

If R is a JL matrix with error ε and failure probability δ/d2, then by Lemma 5, with failure probability δ,

‖z∗ −Rw∗‖2 ≤ γε
√

8β

λ
‖w∗‖1. (8)

By Kane and Nelson (2014), the random projection matrix R satisfies the JL property with error θ and
failure probability δ′/d2 for k ≥ C log(d/δ′)/θ2, where C is a fixed constant. Using Eq. 8, with failure
probability δ′,

‖z∗ −Rw∗‖2 ≤ 8γθ

√
8β

λ
‖w∗‖1. (9)

Recall that R
√
s is a count-sketch matrix with width C1/θ and depth s = C2 log(d/δ′)/θ, where C1 and C2

are fixed constants. Let wproj be the projection of w∗ with the count-sketch matrix R̃, hence wproj =
√
sRw∗.

Let zproj =
√
sz∗. By Eq. 9, with failure probability δ′,

‖zproj −wproj‖2 ≤
√

8βγ2θ log(d/δ′)

λ
‖w∗‖1.

Let wcs be the count-sketch estimate of w∗ derived from wproj, and west be the count-sketch estimate of
w∗ derived from zproj. Recall that the count-sketch estimate of a vector is the median of the estimates of
all the locations to which the vector hashes. As the difference between the median of any two vectors is at
most the `∞-norm of their difference,

‖west −wcs‖∞ ≤ ‖zproj −wproj‖∞ .

Therefore with failure probability δ′,

‖west −wcs‖∞ ≤ ‖zproj −wproj‖∞ ≤ ‖zproj −wproj‖2

≤
√

8βγ2θ log(d/δ′)

λ
‖w∗‖1. (10)

We now use Lemma 6 to bound the error for Count-Sketch recovery.

Lemma 6. (Charikar et al., 2002) Let wcs be the Count-Sketch estimate of the vector w. For any vector
w, with probability 1− δ, a Count-Sketch matrix with width Θ(1/ε2) and depth Θ(log(d/δ)) satisfies,

‖w −wcs‖∞ ≤ ε‖w‖2.

29



Hence using Lemma 6 for the matrix
√
sR, with failure probability δ′,

‖w∗ −wcs‖∞ ≤
√
θ‖w∗‖2.

Now using the triangle inequality and Eq. 10, with failure probability 2δ′ (due to a union bound),

‖w∗ −west‖∞ ≤ ‖w∗ −west‖∞ + ‖west −wcs‖∞

≤
√
θ‖w∗‖2 +

√
8βγ2θ log(d/δ′)

λ
‖w∗‖1

≤
(√

θ +

√
8βγ2θ log(d/δ′)

λ

)
‖w∗‖1.

Therefore choosing θ = min{1, λ/(4βγ2 log(d/δ′))}ε2/4, with failure probability 2δ′,

‖w∗ −west‖∞ ≤ ε‖w∗‖1.

Choosing δ′ = δ/2, for fixed constants C ′, C ′′ and

k = (C ′/ε4) log3(d/δ) max{1, β2γ4/λ2},
s = (C ′′/ε2) log2(d/δ) max{1, βγ2/λ},

with probability 1− δ,
‖w∗ −west‖∞ ≤ ε‖w∗‖1.

A.2 Proof of Theorem 2

Let ft(z) be the loss function corresponding to the data point chosen in the tth time step—

ft(z) = `
(
ytz

TRxt
)

+
λ

2
‖z‖22. (11)

Let zt be the weight vector at the tth time step for online updates on the projected problem. Let z̄ =
1
T

∑T
i=1 ẑi be the average of the weight vectors for all the T time steps. We claim that z̄ is close to z∗, the

optimizer of L̂(z), using Corollary 1 of Shamir (2016). In order to apply the result we first need to define a
few parameters of the function L̂(z). Note that L̂(z) is λ strongly-convex (as L̂(z)− λ

2 ‖z‖
2
2 is convex. As the

derivative of ` is bounded above by H, therefore ` is H-Lipschitz. We assume ‖Rxi‖2 ≤ B, ‖z∗‖2 ≤ D and
maxt ‖∇ft(w)‖2 ≤ G. We will bound B,D and G in the end. We now apply Corollary 1 of Shamir (2016),
with the notation adapted for our setting.

Lemma 7. (Shamir, 2016) Consider any loss function L̂(z) =
∑T
i=1 ft(z), where ft(z) is defined in Eq. 11.

For any H-Lipchitz `i, ‖Rxi‖2 ≤ B, ‖zt‖2 ≤ D, and some fixed constant C, over the randomness in the
order in which the samples are received:

E
[ 1

T

T∑
t=1

L̂(zt)− L̂(z∗)
]
≤ C(RT /

√
T +BDH)√
T

,

where RT is the regret of online gradient descent with respect to the batch optimizer z∗, defined as RT =∑T
t=1[ft(ẑ)− ft(z∗)].

By standard regret bounds on online gradient descent (see Zinkevich (2003)), RT ≤ GD
√
T . Therefore,

E
[ 1

T

T∑
t=1

L̂(zt)− L̂(z∗)
]
≤ CD(G+BH)√

T
.
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Note that by Jensen’s inequality,

E[L̂(z)] ≤ E
[ 1

T

T∑
t=1

L̂(zt)
]

=⇒ E
[
L̂(z̄)− L̂(z∗)

]
≤ CD(G+BH)√

T
. (12)

We will now bound the expected distance between z̄ and z∗ using Eq. 12 and the strong convexity of L̂(w).
As L̂(w) is λ strong-convex and ∇L̂(z∗) = 0, we can write:

L̂(z∗) + (λ/2)‖z̄− z∗‖22 ≤ L̂(z̄)

=⇒ ‖z̄− z∗‖22 ≤ (λ/2)[L̂(z̄)− L̂(z∗)]

=⇒ E
[
‖z̄− z∗‖22

]
≤ (2/λ)

[
E[L̂(z̄)]− L̂(z∗)

]
.

Using Eq. 12 and then Jensen’s inequality,

E
[
‖z̄− z∗‖2

]
≤ 2CD(G+BH)

λ
√
T

. (13)

Let z̄proj =
√
sz̄. Let zwm is the Count-Sketch estimate of w∗ derived from z̄proj. Recall from the proof of

Theorem 1 that zproj =
√
sz and west is the Count-Sketch estimate of w∗ derived from zproj. As in the proof

of Theorem 1, we note that the difference between the medians of any two vectors is at most the `∞ norm
of the difference of the vectors, and hence we can write,

‖west − zwm‖∞ ≤ ‖zproj − z̄proj‖∞ ≤ ‖zproj − z̄proj‖2
=
√
s‖z∗ − z̄‖2.

Therefore, using Eq. 13,

E[‖west − zwm‖∞] ≤ 2CD(G+BH)

λ

√
s

T
. (14)

By the triangle inequality,

‖w∗ − zwm‖∞ ≤ ‖w∗ −west‖∞ + ‖west − zwm‖∞
=⇒ E

[
‖w∗ − zwm‖∞

]
≤ E

[
‖w∗ −west‖∞

]
+ E

[
‖west − zwm‖∞

]
By Theorem 1, for fixed constants C1, C2 and

k = (C1/ε
4) log3(d/δ) max{1, β2γ4/λ2},

s = (C2/ε
2) log2(d/δ) max{1, βγ2/λ},

‖w∗ −west‖∞ ≤ ε‖w∗‖1,

with probability 1− δ. Therefore, for fixed constants C ′1 and C ′2 and probability 1− δ,

E
[
‖w∗ − zwm‖∞

]
≤ ε

2
‖w∗‖1

+

√
4C ′2(GD +BDH)2 log2(d/δ) max{1, LR2/λ}

λ2ε2T
.

Therefore for
T ≥ (C ′3/(ε

4λ2))(D/ ‖w∗‖1)2(G+BH)2 log2(d/δ) max{1, LR2/λ},

E
[
‖w∗ − zwm‖∞

]
≤ ε

2
‖w∗‖1 +

ε

2
‖w∗‖2 ≤ ε ‖w∗‖1 .
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We will now bound B,D and G, starting with B. Note that R is a JL matrix which satisfies condition 7
with ε = θ. Using Lemma 4 and the fact that ‖xi‖2 ≤ 1,

‖Rxi‖2 ≤
√

1 + θγ2 =⇒ B ≤ 1 +
√
θγ ≤ 1 + εγ,

where for the last bound we use the setting of

θ = min{1, λ/(4βγ2 log(d/δ′))}ε2/4

from the proof of Theorem 1. We next bound ‖z∗‖2. Using Lemma 4,

‖z∗ −Rw∗‖2 ≤ 2Rθ
√
β/λ ‖w∗‖1

=⇒ ‖z∗‖2 ≤ ‖Rw∗‖2 + 2Rθ
√
β/λ ‖w∗‖1 .

By Lemma 4, ‖Rw∗‖2 ≤
√
‖w∗‖22 + θ ‖w∗‖21 ≤ ‖w∗‖2 +

√
θ ‖w∗‖1. Therefore,

‖z∗‖2 ≤ ‖w∗‖2 +
√
θ ‖w∗‖1 + 2Rθ

√
β/λ ‖w∗‖1

= ‖w∗‖2 +
(√

θ + 2Rθ
√
β/λ

)
‖w∗‖1 .

For our choice of θ,
‖z∗‖2 ≤ ‖w∗‖2 + ε ‖w∗‖1 =⇒ D ≤ D2 + εD1.

This implies that the (D/ ‖w∗‖1) term in our bound for T can be upper bounded by 2D2/ ‖w∗‖1, yielding
the bound on T stated in Theorem 2. Finally, we need to upper bound G = maxt ‖∇ft(w)‖2. We do this as
follows:

∇ft(z) = `′(ytz
T
t Rxt)Axt + λzt

=⇒ ‖∇ft(z)‖2 ≤ |`
′(ytz

T
t Rx)|‖Rx‖2 + λ‖zt‖2

≤ H(1 + εγ) + λD.

B Baseline Algorithms

Algorithm 3: Simple Truncation

input: loss function `, budget K, `2-regularization parameter λ, learning rate schedule ηt
initialization

S ← {} . Empty heap
t← 0

function Update(x, y)
τ ←

∑
i∈S S[i] · xi . Make prediction

S ← (1− ληt)S − ηtyxi∇`(yτ)
S ← Truncate(S, K)

t← t+ 1
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Algorithm 4: Probabilistic Truncation

input: loss function `, budget K, `2-regularization parameter λ, learning rate schedule ηt
initialization

S0 ← {}, S′ ← {}
t← 0

function Update(x, y)
τ ←

∑
i∈S S[i] · xi . Make prediction

for i ∈ St do
St+1[i]← (1− ληt)St[i]− ηtyxi∇`(yτ)
if St+1[i] 6= 0 and St[i] = 0 then

r ∼ U(0, 1)
else

r ← S′[i]
S′[i]← r|St[i]/St+1[i]|

St+1 ← Truncate(St+1, S′, K)

t← t+ 1
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