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Abstract

Large labeled training sets are the critical building blocks of supervised learning
methods and are key enablers of deep learning techniques. For some applications,
creating labeled training sets is the most time-consuming and expensive part of
applying machine learning. We therefore propose a paradigm for the programmatic
creation of training sets called data programming in which users express weak
supervision strategies or domain heuristics as labeling functions, which are pro-
grams that label subsets of the data, but that are noisy and may conflict. We show
that by explicitly representing this training set labeling process as a generative
model, we can “denoise” the generated training set, and establish theoretically
that we can recover the parameters of these generative models in a handful of
settings. We then show how to modify a discriminative loss function to make it
noise-aware, and demonstrate our method over a range of discriminative models
including logistic regression and LSTMs. Experimentally, on the 2014 TAC-KBP
Slot Filling challenge, we show that data programming would have led to a new
winning score, and also show that applying data programming to an LSTM model
leads to a TAC-KBP score almost 6 F1 points over a state-of-the-art LSTM baseline
(and into second place in the competition). Additionally, in initial user studies we
observed that data programming may be an easier way for non-experts to create
machine learning models when training data is limited or unavailable.

1 Introduction

Many of the major machine learning breakthroughs of the last decade have been catalyzed by the
release of a new labeled training datasetﬂ Supervised learning approaches that use such datasets have
increasingly become key building blocks of applications throughout science and industry. This trend
has also been fueled by the recent empirical success of automated feature generation approaches,
notably deep learning methods such as long short term memory (LSTM) networks [[14]], which amelio-
rate the burden of feature engineering given large enough labeled training sets. For many real-world
applications, however, large hand-labeled training sets do not exist, and are prohibitively expen-
sive to create due to requirements that labelers be experts in the application domain. Furthermore,
applications’ needs often change, necessitating new or modified training sets.

To help reduce the cost of training set creation, we propose data programming, a paradigm for the
programmatic creation and modeling of training datasets. Data programming provides a simple,
unifying framework for weak supervision, in which training labels are noisy and may be from
multiple, potentially overlapping sources. In data programming, users encode this weak supervision
in the form of labeling functions, which are user-defined programs that each provide a label for
some subset of the data, and collectively generate a large but potentially overlapping set of training
labels. Many different weak supervision approaches can be expressed as labeling functions, such
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as strategies which utilize existing knowledge bases (as in distant supervision [22[]), model many
individual annotator’s labels (as in crowdsourcing), or leverage a combination of domain-specific
patterns and dictionaries. Because of this, labeling functions may have widely varying error rates and
may conflict on certain data points. To address this, we model the labeling functions as a generative
process, which lets us automatically denoise the resulting training set by learning the accuracies of
the labeling functions along with their correlation structure. In turn, we use this model of the training
set to optimize a stochastic version of the loss function of the discriminative model that we desire to
train. We show that, given certain conditions on the labeling functions, our method achieves the same
asymptotic scaling as supervised learning methods, but that our scaling depends on the amount of
unlabeled data, and uses only a fixed number of labeling functions.

Data programming is in part motivated by the challenges that users faced when applying prior
programmatic supervision approaches, and is intended to be a new software engineering paradigm for
the creation and management of training sets. For example, consider the scenario when two labeling
functions of differing quality and scope overlap and possibly conflict on certain training examples; in
prior approaches the user would have to decide which one to use, or how to somehow integrate the
signal from both. In data programming, we accomplish this automatically by learning a model of the
training set that includes both labeling functions. Additionally, users are often aware of, or able to
induce, dependencies between their labeling functions. In data programming, users can provide a
dependency graph to indicate, for example, that two labeling functions are similar, or that one “fixes”
or “reinforces” another. We describe cases in which we can learn the strength of these dependencies,
and for which our generalization is again asymptotically identical to the supervised case.

One further motivation for our method is driven by the observation that users often struggle with
selecting features for their models, which is a traditional development bottleneck given fixed-size
training sets. However, initial feedback from users suggests that writing labeling functions in the
framework of data programming may be easier [12]]. While the impact of a feature on end performance
is dependent on the training set and on statistical characteristics of the model, a labeling function has
a simple and intuitive optimality criterion: that it labels data correctly. Motivated by this, we explore
whether we can flip the traditional machine learning development process on its head, having users
instead focus on generating training sets large enough to support automatically-generated features.

Summary of Contributions and Qutline Our first contribution is the data programming frame-
work, in which users can implicitly describe a rich generative model for a training set in a more
flexible and general way than in previous approaches. In Section 3] we first explore a simple model in
which labeling functions are conditionally independent. We show here that under certain conditions,
the sample complexity is nearly the same as in the labeled case. In Section[d} we extend our results to
more sophisticated data programming models, generalizing related results in crowdsourcing [17]. In
Section[5} we validate our approach experimentally on large real-world text relation extraction tasks
in genomics, pharmacogenomics and news domains, where we show an average 2.34 point F1 score
improvement over a baseline distant supervision approach—including what would have been a new
competition-winning score for the 2014 TAC-KBP Slot Filling competition. Using LSTM-generated
features, we additionally would have placed second in this competition, achieving a 5.98 point F1
score gain over a state-of-the-art LSTM baseline [32]]. Additionally, we describe promising feedback
from a usability study with a group of bioinformatics users.

2 Related Work

Our work builds on many previous approaches in machine learning. Distant supervision is one
approach for programmatically creating training sets. The canonical example is relation extraction
from text, wherein a knowledge base of known relations is heuristically mapped to an input corpus [}
22||. Basic extensions group examples by surrounding textual patterns, and cast the problem as a
multiple instance learning one [[15/]25]]. Other extensions model the accuracy of these surrounding
textual patterns using a discriminative feature-based model [26]], or generative models such as
hierarchical topic models [1},27,31]]. Like our approach, these latter methods model a generative
process of training set creation, however in a proscribed way that is not based on user input as in
our approach. There is also a wealth of examples where additional heuristic patterns used to label
training data are collected from unlabeled data [[7] or directly from users [21,29], in a similar manner
to our approach, but without any framework to deal with the fact that said labels are explicitly noisy.



Crowdsourcing is widely used for various machine learning tasks [[13}18]]. Of particular relevance
to our problem setting is the theoretical question of how to model the accuracy of various experts
without ground truth available, classically raised in the context of crowdsourcing [10]]. More recent
results provide formal guarantees even in the absence of labeled data using various approaches [4,
9,/16L/17,)24,33]]. Our model can capture the basic model of the crowdsourcing setting, and can be
considered equivalent in the independent case (Sec. [3). However, in addition to generalizing beyond
getting inputs solely from human annotators, we also model user-supplied dependencies between the
“labelers” in our model, which is not natural within the context of crowdsourcing. Additionally, while
crowdsourcing results focus on the regime of a large number of labelers each labeling a small subset
of the data, we consider a small set of labeling functions each labeling a large portion of the dataset.

Co-training is a classic procedure for effectively utilizing both a small amount of labeled data and a
large amount of unlabeled data by selecting two conditionally independent views of the data [5]. In
addition to not needing a set of labeled data, and allowing for more than two views (labeling functions
in our case), our approach allows explicit modeling of dependencies between views, for example
allowing observed issues with dependencies between views to be explicitly modeled [[19].

Boosting is a well known procedure for combining the output of many “weak” classifiers to create a
strong classifier in a supervised setting [28]]. Recently, boosting-like methods have been proposed
which leverage unlabeled data in addition to labeled data, which is also used to set constraints on the
accuracies of the individual classifiers being ensembled [3]]. This is similar in spirit to our approach,
except that labeled data is not explicitly necessary in ours, and richer dependency structures between
our “heuristic” classifiers (labeling functions) are supported.

The general case of learning with noisy labels is treated both in classical [20] and more recent
contexts [23[]. It has also been studied specifically in the context of label-noise robust logistic
regression [|6]]. We consider the more general scenario where multiple noisy labeling functions can
conflict and have dependencies.

3 The Data Programming Paradigm

In many applications, we would like to use machine learning, but we face the following challenges:
(i) hand-labeled training data is not available, and is prohibitively expensive to obtain in sufficient
quantities as it requires expensive domain expert labelers; (ii) related external knowledge bases are
either unavailable or insufficiently specific, precluding a traditional distant supervision or co-training
approach; (iii) application specifications are in flux, changing the model we ultimately wish to learn.

In such a setting, we would like a simple, scalable and adaptable approach for supervising a model
applicable to our problem. More specifically, we would ideally like our approach to achieve €
expected loss with high probability, given O(1) inputs of some sort from a domain-expert user, rather
than the traditional O(e~2) hand-labeled training examples required by most supervised methods
(where O notation hides logarithmic factors). To this end, we propose data programming, a paradigm
for the programmatic creation of training sets, which enables domain-experts to more rapidly train
machine learning systems and has the potential for this type of scaling of expected loss. In data
programming, rather than manually labeling each example, users instead describe the processes by
which these points could be labeled by providing a set of heuristic rules called labeling functions.

In the remainder of this paper, we focus on a binary classification task in which we have a distribution
7 over object and class pairs (x,y) € X X {—1, 1}, and we are concerned with minimizing the logistic
loss under a linear model given some features,

1w) = By [log(1 + exp(—w f(0y))]

where without loss of generality, we assume that ||f(x)|| < 1. Then, a labeling function 4; : X
{—1,0, 1} is a user-defined function that encodes some domain heuristic, which provides a (non-zero)
label for some subset of the objects. As part of a data programming specification, a user provides
some m labeling functions, which we denote in vectorized form as 1 : X +— {-1,0, 1}".

Example 3.1. To gain intuition about labeling functions, we describe a simple text relation extraction
example. In Figure [T} we consider the task of classifying co-occurring gene and disease mentions as
either expressing a causal relation or not. For example, given the sentence “Gene A causes disease B”,
the object x = (A, B) has true class y = 1. To construct a training set, the user writes three labeling



def lambda_1(x): e
return 1 if (x.gene,x.pheno) in KNOWN_RELATIONS_ 1 else 0

def lambda_2(x):

return -1 if re.match(r’.xnot.cause.x’, x.text_between) else 0
def lambda_3(x): e e e

return 1 if re.match(r’.+associated.x’, x.text_between)
and (x.gene,x.pheno) in KNOWN_RELATIONS_2 else 0 (b) The generative model Of a

) . . training set defined by the user
(a) An example set of three labeling functions written by a user. input (unary factors omitted).

Figure 1: An example of extracting mentions of gene-disease relations from the scientific literature.

functions (Figure[Ta). In A;, an external structured knowledge base is used to label a few objects with
relatively high accuracy, and is equivalent to a traditional distant supervision rule (see Sec.[2). 1»
uses a purely heuristic approach to label a much larger number of examples with lower accuracy.
Finally, 43 is a “hybrid” labeling function, which leverages a knowledge base and a heuristic.

A labeling function need not have perfect accuracy or recall; rather, it represents a pattern that the
user wishes to impart to their model and that is easier to encode as a labeling function than as a
set of hand-labeled examples. As illustrated in Ex. [3.1] labeling functions can be based on external
knowledge bases, libraries or ontologies, can express heuristic patterns, or some hybrid of these types;
we see evidence for the existence of such diversity in our experiments (Section[5). The use of labeling
functions is also strictly more general than manual annotations, as a manual annotation can always be
directly encoded by a labeling function. Importantly, labeling functions can overlap, conflict, and
even have dependencies which users can provide as part of the data programming specification (see
Section[d)); our approach provides a simple framework for these inputs.

Independent Labeling Functions We first describe a model in which the labeling functions label
independently, given the true label class. Under this model, each labeling function A; has some
probability 3; of labeling an object and then some probability «; of labeling the object correctly; for
simplicity we also assume here that each class has probability 0.5. This model has distribution

1 m
Hop(N,Y) = 3 l_[ Biailia,=y) + Bi(1 — a)lip,=——yy + (1 = B)Lia,=0y) (D
i=1

where A € {—1,0, 1}"" contains the labels output by the labeling functions, and Y € {-1, 1} is the
predicted class. If we allow the parameters @ € R” and 8 € R™ to vary, (1) specifies a family of
generative models. In order to expose the scaling of the expected loss as the size of the unlabeled
dataset changes, we will assume here that 0.3 < 8; < 0.5 and 0.8 < a; < 0.9. We note that while
these arbitrary constraints can be changed, they are roughly consistent with our applied experience,
where users tend to write high-accuracy and high-coverage labeling functions.

Our first goal will be to learn which parameters (a, 8) are most consistent with our observations—our
unlabeled training set—using maximum likelihood estimation. To do this for a particular training set
S c X, we will solve the problem

(@,p) = arg n;%x Z 1og P(A y)-ps, s (A = Ax)) = arg rr;%x Z log{ Z ,ua,ﬁ(/l(x),y')] 2)

xes xeS ye{-1,1}

In other words, we are maximizing the probability that the observed labels produced on our training
examples occur under the generative model in (T)). In our experiments, we use stochastic gradient
descent to solve this problem; since this is a standard technique, we defer its analysis to the appendix.

Noise-Aware Empirical Loss Given that our parameter learning phase has successfully found
some & and f3 that accurately describe the training set, we can now proceed to estimate the parameter
w which minimizes the expected risk of a linear model over our feature mapping £, given &, 3. To do
so, we define the noise-aware empirical risk L; 3 with regularization parameter p, and compute the
noise-aware empirical risk minimizer

1 T
V= L (e S) = ~ 2: WOV A = 2
W = arg mM}n L&ﬁ(w, S)=arg n}&n q E(A,y)ﬂ,&jf [log (1 +e )‘A /l(x)] +pllwl| 3)

xeS



This is a logistic regression problem, so it can be solved using stochastic gradient descent as well.

We can in fact prove that stochastic gradient descent running on (2) and (3)) is guaranteed to produce
accurate estimates, under conditions which we describe now. First, the problem distribution 7 needs
to be accurately modeled by some distribution y in the family that we are trying to learn. That is, for
some a* and S,

YA € (=10, }".Y € {=1, 1}, Prryor (A(0) = A, y = Y) = o g (A, Y). “4)
Second, given an example (x,y) ~ 7, the class label y must be independent of the features f(x) given
the labels A(x). That is,

(xy)~7" =y L f(x)|Ax). &)

This assumption encodes the idea that the labeling functions, while they may be arbitrarily dependent
on the features, provide sufficient information to accurately identify the class. Third, we assume that
the algorithm used to solve (3) has bounded generalization risk such that for some parameter y,

B |[Bs [L503:.5)] - minEs [ L, 500550 | <. ©)
Under these conditions, we make the following statement about the accuracy of our estimates, which

is a simplified version of a theorem that is detailed in the appendix.
Theorem 1. Suppose that we run data programming, solving the problems in @) and @) using
stochastic gradient descent to produce (&,3) and W. Suppose further that our setup satisfies the
conditions @), (), and (6), and suppose that m > 2000. Then for any € > 0, if the number of labeling
functions m and the size of the input dataset S are large enough that
356 m

s1> =5 log<3—6)

then our expected parameter error and generalization risk can be bounded by

E[lld - o*IF| < me’ E[Ilﬁ—ﬁ*

2] < mé E [l(ﬁ/) —minl(w)| < y + —.
We select m > 2000 to simplify the statement of the theorem and give the reader a feel for how €
scales with respect to |S|. The full theorem with scaling in each parameter (and for arbitrary m) is
presented in the appendix. This result establishes that to achieve both expected loss and parameter
estimate error e, it suffices to have only m = O(1) labeling functions and |S| = O(e™?) training
examples, which is the same asymptotic scaling exhibited by methods that use labeled data. This
means that data programming achieves the same learning rate as methods that use labeled data, while
requiring asymptotically less work from its users, who need to specify O(1) labeling functions rather
than manually label O(e~2) examples. In contrast, in the crowdsourcing setting [17], the number of
workers m tends to infinity while here it is constant while the dataset grows. These results provide
some explanation of why our experimental results suggest that a small number of rules with a large
unlabeled training set can be effective at even complex natural language processing tasks.

4 Handling Dependencies

In our experience with data programming, we have found that users often write labeling functions
that have clear dependencies among them. As more labeling functions are added as the system is
developed, an implicit dependency structure arises naturally amongst the labeling functions: modeling
these dependencies can in some cases improve accuracy. We describe a method by which the user
can specify this dependency knowledge as a dependency graph, and show how the system can use it
to produce better parameter estimates.

Label Function Dependency Graph To support the injection of dependency information into the
model, we augment the data programming specification with a label function dependency graph,
GcDx{l,...,m}x{1,...,m}, which is a directed graph over the labeling functions, each of the
edges of which is associated with a dependency type from a class of dependencies D appropriate to
the domain. From our experience with practitioners, we identified four commonly-occurring types of
dependencies as illustrative examples: similar, fixing, reinforcing, and exclusive (see Figure2)).

For example, suppose that we have two functions 4; and A, and A, typically labels only when (i)
Ay also labels, (ii) 4; and A, disagree in their labeling, and (iii) A, is actually correct. We call this a
fixing dependency, since A, fixes mistakes made by 4. If 1; and 1, were to typically agree rather
than disagree, this would be a reinforcing dependency, since A, reinforces a subset of the labels of A;.



lambda_1(x)

f(’.+cause.*’)

lambda_1(x) = f(x.word) lambda_2(x) = f(‘-*nolucause»*’) lambda_1(x) = x in DISEASES_A

lambda_2(x) = f(x.lemma) lambda_3(x) = f(7.xcause.x") lambda_2(x) = x in DISEASES_B

Similar (lambda_1, lambda_2) Fixes(lambda_1, lambda_2) Excludes (lambda_1, lambda_2)
Reinforces (lambda_1, lambda_3)

Figure 2: Examples of labeling function dependency predicates.

Modeling Dependencies The presence of dependency information means that we can no longer
model our labels using the simple Bayesian network in (T). Instead, we model our distribution as a
factor graph. This standard technique lets us describe the family of generative distributions in terms
of a known factor function h : {~1,0,1}" x {=1, 1} — {=1,0, 1} (in which each entry h; represents
a factor), and an unknown parameter 6 € RM as

to(A,Y) = Z exp(8” h(A, 1)),

where Zy is the partition function which ensures that y is a distribution. Next, we will describe how
we define & using information from the dependency graph.

To construct /&, we will start with some base factors, which we inherit from , and then augment
them with additional factors representing dependencies. For all i € {1,...,m}, we let

oA Y) =Y, h(AY)=AY, hpiltAY)=As hopi(AY) =AY, hyi(AY) = A7,

These factors alone are sufficient to describe any distribution for which the labels are mutually
independent, given the class: this includes the independent family in (T).

We now proceed by adding additional factors to s, which model the dependencies encoded in
G. For each dependency edge (d, i, j), we add one or more factors to & as follows. For a near-
duplicate dependency on (i, j), we add a single factor A,(A,Y) = {A; = A;}, which increases
our prior probability that the labels will agree. For a fixing dependency, we add two factors,
h(A,Y) = -1{A; = 0 AAj # 0} and A1 (A, Y) = {A; = =Y A A; = Y}, which encode the idea
that 4; labels only when 4; does, and that A, fixes errors made by A;. The factors for a reinforcing
dependency are the same, except that ,.1(A,Y) = I{A; = Y A A; = Y}. Finally, for an exclusive
dependency, we have a single factor 4,(A,Y) = —1{A; # 0 A A; # O}.

Learning with Dependencies We can again solve a maximum likelihood problem like to
learn the parameter 6. Using the results, we can continue on to find the noise-aware empirical loss
minimizer by solving the problem in (3). In order to solve these problems in the dependent case, we
typically invoke stochastic gradient descent, using Gibbs sampling to sample from the distributions
used in the gradient update. Under conditions similar to those in Section[3] we can again provide a
bound on the accuracy of these results. We define these conditions now. First, there must be some set
©® c RM that we know our parameter lies in. This is analogous to the assumptions on a; and 3; we
made in Section [3] and we can state the following analogue of (@):

36" € Os.t. V(A Y) € {-1,0,1}" X {=1, 1}, Piryyore (Ax) = A,y =Y) = o (A, Y). @)
Second, for any 6 € @, it must be possible to accurately learn 6 from full (i.e. labeled) samples of

. More specifically, there exists an unbiased estimator 8(T) that is a function of some dataset 7' of
independent samples from gy such that, for some ¢ > 0 and for all 8 € @,

Cov (A(T)) = Q2cITI)'I. (8)
Third, for any two feasible models 6, and 6, € @,
E(A]’YI)NMI [Var(Az,yz)Nmz (Y2|A1 = Az)] < CM_l. (9)

That is, we’ll usually be reasonably sure in our guess for the value of Y, even if we guess using
distribution pp, while the the labeling functions were actually sampled from (the possibly totally
different) uy, . We can now prove the following result about the accuracy of our estimates.



KBP (News) Genomics Pharmacogenomics
Features Method || Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
ITR 51.15 | 26.72 | 35.10 || 83.76 | 41.67 | 55.65 || 68.16 | 49.32 | 57.23
Hand-tuned | DP 50.52 | 29.21 | 37.02 || 83.90 | 43.43 | 57.24 | 68.36 | 54.80 | 60.83
LSTM ITR 37.68 | 28.81 | 32.66 || 69.07 | 50.76 | 58.52 || 32.35 | 43.84 | 37.23
DP 4747 | 27.88 | 35.78 || 7548 | 48.48 | 58.99 || 37.63 | 47.95 | 42.17
Table 1: Precision/Recall/F1 scores using data programming (DP), as compared to distant supervision

ITR approach, with both hand-tuned and LSTM-generated features.

Theorem 2. Suppose that we run stochastic gradient descent to produce 6 and W, and that our setup
satisfies the conditions O)-(9). Then for any € > 0, if the input dataset S is large enough that

2 21i6p — "I
IS|> 22 log (f ,
then our expected parameter error and generalization risk can be bounded by
E|lo-o[| < me E [10%) = minton)| < + 55
w Y

As in the independent case, this shows that we need only |S| = O(e2) unlabeled training examples
to achieve error O(e), which is the same asymptotic scaling as supervised learning methods. This
suggests that while we pay a computational penalty for richer dependency structures, we are no less
statistically efficient. In the appendix, we provide more details, including an explicit description of
the algorithm and the step size used to achieve this result.

S Experiments

We seek to experimentally validate three claims about our approach. Our first claim is that data
programming can be an effective paradigm for building high quality machine learning systems,
which we test across three real-world relation extraction applications. Our second claim is that data
programming can be used successfully in conjunction with automatic feature generation methods,
such as LSTM models. Finally, our third claim is that data programming is an intuitive and productive
framework for domain-expert users, and we report on our initial user studies.

Relation Mention Extraction Tasks In the relation mention extraction task, our objects are rela-
tion mention candidates x = (e, e;), which are pairs of entity mentions ey, e, in unstructured text,
and our goal is to learn a model that classifies each candidate as either a true textual assertion of the
relation R(ey, e;) or not. We examine a news application from the 2014 TAC-KBP Slot Filling chal-
lengeﬂ where we extract relations between real-world entities from articles [2]; a clinical genomics
application, where we extract causal relations between genetic mutations and phenotypes from the
scientific literatureE]; and a pharmacogenomics application where we extract interactions between
genes, also from the scientific literature [21]]; further details are included in the Appendix.

For each application, we or our collaborators originally built a system where a training set was
programmatically generated by ordering the labeling functions as a sequence of if-then-return
statements, and for each candidate, taking the first label emitted by this script as the training label.
We refer to this as the if-then-return (ITR) approach, and note that it often required significant domain
expert development time to tune (weeks or more). For this set of experiments, we then used the same
labeling function sets within the framework of data programming. For all experiments, we evaluated
on a blind hand-labeled evaluation set. In Table 1, we see that we achieve consistent improvements:
on average by 2.34 points in F1 score, including what would have been a winning score on the 2014
TAC-KBP challenge [30].

We observed these performance gains across applications with very different labeling function sets.
We describe the labeling function summary statistics—coverage is the percentage of objects that
had at least one label, overlap is the percentage of objects with more than one label, and conflict is

Zhttp://www.nist.gov/tac/2014/KBP/
Shttps://github.com/HazyResearch/dd-genomics
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the percentage of objects with conflicting labels—and see in Table 2 that even in scenarios where
m is small, and conflict and overlap is relatively less common, we still realize performance gains.
Additionally, on a disease mention extraction task (see Usability Study), which was written from
scratch within the data programming paradigm, allowing developers to supply dependencies of the
basic types outlined in Sec.[d]led to a 2.3 point F1 score boost.

Application #of LFs | Coverage | |S,:0| | Overlap | Conflict l;;TScore Im{)gz;lf/{ment
KBP (News) 40 29.39 2.03M 1.38 0.15 1.92 3.12
Genomics 146 53.61 256K 26.71 2.05 1.59 0.47
Pharmacogenomics 7 7.70 129K 0.35 0.32 3.60 4.94
Diseases 12 53.32 418K 31.81 0.98 N/A N/A

Table 2: Labeling function (LF) summary statistics, sizes of generated training sets S 14 (only counting non-zero
labels), and relative F1 score improvement over baseline IRT methods for hand-tuned (HT) and LSTM-generated
(LSTM) feature sets.

Automatically-generated Features We additionally compare both hand-tuned and automatically-
generated features, where the latter are learned via an LSTM recurrent neural network (RNN) [[14].
Conventional wisdom states that deep learning methods such as RNNs are prone to overfitting to the
biases of the imperfect rules used for programmatic supervision. In our experiments, however, we
find that using data programming to denoise the labels can mitigate this issue, and we report a 9.79
point boost to precision and a 3.12 point F1 score improvement on the benchmark 2014 TAC-KBP
(News) task, over the baseline if-then-return approach. Additionally for comparison, our approach is
a 5.98 point F1 score improvement over a state-of-the-art LSTM approach [32].

Usability Study One of our hopes is that a user without expertise in ML will be more productive
iterating on labeling functions than on features. To test this, we arranged a hackathon involving
a handful of bioinformatics researchers, using our open-source information extraction framework
Snorkeﬂ (formerly DDLite). Their goal was to build a disease tagging system which is a common
and important challenge in the bioinformatics domain [11]]. The hackathon participants did not have
access to a labeled training set nor did they perform any feature engineering. The entire effort was
restricted to iterative labeling function development and the setup of candidates to be classified. In
under eight hours, they had created a training set that led to a model which scored within 10 points of
F1 of the supervised baseline; the gap was mainly due to recall issue in the candidate extraction phase.
This suggests data programming may be a promising way to build high quality extractors, quickly.

6 Conclusion and Future Work

We introduced data programming, a new approach to generating large labeled training sets. We
demonstrated that our approach can be used with automatic feature generation techniques to achieve
high quality results. We also provided anecdotal evidence that our methods may be easier for domain
experts to use. We hope to explore the limits of our approach on other machine learning tasks that
have been held back by the lack of high-quality supervised datasets, including those in other domains
such imaging and structured prediction.
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