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Efficient Octree-Based Volumetric SLAM
Supporting Signed-Distance and Occupancy

Mapping
Emanuele Vespa1, Nikolay Nikolov1, Marius Grimm2, Luigi Nardi3, Paul H J Kelly1, Stefan Leutenegger1

Abstract—We present a dense volumetric SLAM framework
that uses an octree representation for efficient fusion and ren-
dering of either a truncated signed distance field (TSDF) or
occupancy map. The primary aim of this work is to use one
single representation of the environment that can be used not
only for robot pose tracking, and high-resolution mapping, but
seamlessly for planning. We show that our highly efficient octree
representation of space fits SLAM and planning purposes in
a real-time control loop. In a comprehensive evaluation, we
demonstrate dense SLAM accuracy and runtime performance on-
par with flat hashing approaches when using TSDF-based maps,
and considerable speed-ups when using occupancy mapping
compared to standard occupancy maps frameworks. Our SLAM
system can run at 10-40 Hz on a modern quadcore CPU,
without the need for massive parallelisation on a GPU. We
furthermore demonstrate a probabilistic occupancy mapping as
an alternative to TSDF mapping in dense SLAM and show its
direct applicability to online motion planning, using the example
of Informed RRT*.

Index Terms—Mapping, SLAM, Visual-Based Navigation

I. INTRODUCTION

IN the past few years, SLAM research has progressed at
an unprecedented speed. The widespread availability of

commodity depth sensors fuelled a true paradigm shift from
sparse systems, in which typically the maps consisted of
sparse landmarks, to fully dense methods where essentially
the full scene geometry can be reconstructed. Among the
various dense SLAM systems, volumetric methods such as
KinectFusion [24] rapidly became popular given the high-
quality results achievable in real-time, comparable to what is
attainable with more complex, inherently offline reconstruction
methods such as [8][37]. At the same time, slightly different
map formulations have been proposed. While occupancy map-
ping has been the de-facto standard in robotics to plan motion,
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Fig. 1: Example trajectory (green) for a multicopter Micro
Aerial Vehicle (MAV) computed with the Informed RRT*
planning algorithm (with smoothing) depicted on a fine-
grained occupancy map obtained by our SLAM system.

recent work in high-quality dense reconstruction has recently
proposed its adoption [21], reconciling the reconstruction
capabilities of signed distance functions with the probabilistic
rigour of occupancy grid mapping. From the point of view
of efficiency, volumetric maps scale poorly as the resolution
and area covered increases, implying that they could not cope
with environments larger than a modest size office. A key
observation is that large parts of the mapped space are actually
empty, hence most voxels do not hold any significant geomet-
ric information. In this perspective, sparse representations have
been introduced to considerably reduce the amount of voxels
to be stored and processed. In the literature we can distinguish
two predominant approaches: hierarchical data-structures, such
as octrees [36] or N3 trees [7], and flat hash-tables [26].
Although enormous speed-ups have been demonstrated with
hash-tables, performance of tree based data-structures has not
been very satisfactory. However, hierarchical data-structures
might be desirable in different scenarios as they naturally allow
for storing information at different level of details and conse-
quently compress maps where values are constant. With this
work we aim at bridging this performance gap by providing an
efficient and generic fusion pipeline based on octrees. We show
that the inherent overhead that the rich hierarchical structure
implies is not prohibitive, while still providing a complete
spatial index of the mapped scene, which is useful in many
robotics applications, most prominently, planning. In summary,
our contributions consist of the following elements:

1) A dense volumetric SLAM framework with Iterative-
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Closest-Point (ICP) tracking and fusion into an octree-
based map implementation based on Morton numbers.

2) We present an alternative to traditional TSDF-based
mapping that uses fully probabilistic occupancy map-
ping, which explicitly represents free space, for seamless
integration with robotic planning.

3) We provide comprehensive evaluation on real-world and
synthetic datasets. We demonstrate accuracy on-par with
state-of-the-art volumetric SLAM pipelines and runtime
efficiency on-par with InfiniTAM [16] when using TSDF
maps, while showing substantial speed-ups compared
to de-facto standard frameworks in occupancy mapping
such as Octomap [15].

4) We show a prototype integration of our occupancy map
with Informed RRT* path planning demonstrating the
versatility of our framework in the robotic context.

The paper is organised as it follows. In Section II we
overview the most relevant related work on spatial indexing
for dense volumetric maps. Section III describes our optimised
octree data-structure. In Section IV we describe our dense
SLAM pipelines based on TSDF and occupancy maps. The
evaluation in Section V contains quantitative results in terms
of accuracy, timing and memory consumption, including an
example application to motion planning.

II. RELATED WORK

Real-time tracking and mapping algorithms play a central
role in many robotics and vision applications and hence have
been subject of extensive studies over the past three decades.
In this work, we focus on dense volumetric SLAM methods,
as they offer superior mapping capabilities compared to sparse
[18][22] or semi-dense methodologies [11]. The base of our
work is the seminal KinectFusion [24] algorithm, where the
mapped space is represented with a discrete truncated signed
distance field (TSDF) [10]. Although capable of achieving
impressive reconstruction results, methods based on discrete
voxel grids suffer of scalability issues as the required memory
and computation time grows cubically with the resolution or
space covered.

To overcome such limitations different solutions have been
proposed. In [34] and [29], a fixed size volume is shifted
in space as the camera moves and mapped areas that fall
outside the new covered area are converted to a compact mesh
representation. Another line of research focused on exploiting
the inherent sparsity of the reconstructed geometry. Spatial
decomposition data-structures, such as octrees, N3 trees or kd-
trees have been widely investigated and exploited to accelerate
computation in a variety of fields, ranging from graphics [9],
physics [4] or computational science [3]. In the context of
RGB-D volumetric SLAM, their first usage dates back to [36],
where a GPU-based octree is used to store non-empty voxels.
However, the speed-ups attained are not particularly significant
compared to KinectFusion and furthermore the ray-casting
strategy proposed is prone to drift. Similarly, Steinbrucker
et al. [31] fuse each depth frame on a multi-scale octree
optimised for CPU but rely on an external SLAM system for
camera tracking. Chen et al. [7] propose a dynamic, GPU-
based, N3 tree-structure, where N is the branching factor for
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Fig. 2: Octree structure overview.

a node in the tree. Interestingly, each level of the tree may have
a different branching factor and they empirically demonstrate
that such strategy can bring better performance compared to
rigid space subdivision.

Nießner et al. [26] introduced a hashing-based algorithm in
which non-empty voxels are organised in spatially contiguous
macro-blocks and indexed via a flat hash table. This approach
is taken even further with InfiniTAM [16], where speed-ups of
an order of magnitude compared to previous implementations
are achieved. Hashing, however, could be limiting when an
explicit distinction between empty but seen space and unseen
space is required. This is not a problem in case of truncated
signed distance maps, as such distinction does not arise, but
in case of occupancy grids, where the map is used for path
planning purposes, keeping the distinction explicit is required.

Occupancy maps are commonly used in robotic contexts
for path planning purposes. Frameworks as Octomap [15] use
hierarchical octrees to store and update occupancy probabili-
ties. However, as we discuss in Section IV-D, occupancy maps
cannot capture the exact surface boundaries and furthermore
there has not been enough focus on computational perfor-
mance, making the existing solution unsuitable for real-time,
incremental mapping. In a recent contribution by Oleynikova
et al. [27], path planning is performed on an Euclidean Signed
Distance Field (ESDF) incrementally built from a TSDF repre-
sentation. This is complementary to the work presented in this
paper, as we aim at providing a flexible hierarchical framework
which can work with any map representations which supports
the notion of empty space as required in a robotics setting,
without compromising on flexibility or performance.

III. DATA STRUCTURE

In this section we describe the core architecture of our
octree data-structure on top of which we have built the
SLAM pipelines and the path-planning application described
in Section IV and V-C.

A. Core components

Our framework relies on the octree hierarchy shown in
Figure 2. Similarly to [26] and [16] we aggregate voxels
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Fig. 3: Morton codes and traversal ordering for a 2D grid.

at the finest resolution into aggregated contiguous blocks of
parametric size, by default 83 voxels. This is in contrast to
previous work on octrees [36], where the deepest level stores
individual voxels. In this perspective, the map simply becomes
a collection of unordered sparsely allocated voxel blocks and
the tree a spatial index of the scene that allows the correct
piece of data to be retrieved given its integer coordinates. Op-
tionally, internal nodes can carry data themselves, allowing for
a space representation at multiple level of details. In contrast
to previous works, we do not assume any particular fixed data-
type, such as a signed distance function or occupancy cells.
Instead we provide a flexible type traits mechanism to give full
control to the application developer over the field encoded in
the octree. For maximum efficiency we allocate internal nodes
and aggregated voxel blocks on a memory pool which ensure
thread safe lock-free batch allocations. We will discuss our
allocation strategy in great details in Section III-C.

B. Information access

Efficient tree traversal is achieved via Morton coding. A
Morton number can be thought of as a linear unrolling of a
n-dimensional coordinate. More specifically, given a cell in a
n-dimensional grid with integer coordinates (x1, x2, . . . , xn)
its associated Morton code is obtained interleaving the bits
from each coordinate into a single number. Figure 3 shows
an illustrative example of this concept on a two-dimensional
four-by-four grid. As we can see, interleaved bits from the
x and y coordinate form a unique code for each cell. A
crucial property of these numbers is that they not only uniquely
identify voxels in a regular grid, but that the higher bits
recursively represent the location of parent voxels in a coarser
grid, effectively specifying a full traversal of the correspondent
tree and implicitly defining its structure. As an example, if we
consider cell (x, y) = (2, 1) with its associated code 0110,
starting from the root we would first descend to the top-right
sub-grid (code 01) and then select the child with code 10, i.e.
our target pixel with code 0110.

C. Voxel blocks allocation

Our library targets real-time mapping applications, hence it
assumes a continuously growing mapped space. This implies
that the allocation of new voxel blocks in the hierarchy must
be performed extremely fast and with the lowest overhead

possible. Parallel tree allocation strategies have been widely
explored in the computer graphics domain as hierarchical data-
structures are common accelerators for ray-tracing and colli-
sion detection algorithms [20], [13]. To maximise parallelism
in the tree construction, we adopt a technique based on Morton
numbers inspired by [13] and [1]. We use a breadth-first top-to-
bottom allocation which takes full advantage of this numbering
property. First, each voxel to be allocated is associated with
its Morton number and the resulting list of keys is sorted.
For each level in the tree, we filter the key list by masking
each code with the appropriate bit-mask for the current level.
The bit-mask for a given level sets the bits corresponding to
finer subgrids to 0. This procedure will generate duplicate keys
which we eliminate with a compaction operation, as illustrated
in Figure 4. This, together with the fact that by construction
the structure to reach a given node would have been allocated
at a previous step, allows us to allocate all the nodes in parallel
without requiring any synchronisation between threads. This
technique still requires a lock-step execution from one level to
the next. However we found its performance satisfactory, since
the actual bottleneck is the volumetric information update.
More complex algorithms that avoid the synchronisation step
are found in the literature, e.g. [17], if a faster allocation
step is needed. Notice that, after a transient initial phase, the
number of voxel blocks to be allocated per frame decreases
considerably as new blocks will most likely be required at the
frame border or in previously occluded regions.

D. Field interpolation

Iso-surface extraction algorithms, such as ray-casting and
marching cubes, rely heavily on repeated field sampling,
hence it is crucial to have efficient ways of querying the
underlying representation. To this purpose, our framework pro-
vides optimised nearest neighbour and tri-linear interpolation
functions. Tri-linear interpolations requires the eight discrete
voxels surrounding the sampling points to be collected. In
a sparsely allocated grid this could be expensive as several
tree traversals are required to gather the desired points. We
limit such performance penalty by observing that there is a
finite number of access patterns which can occur. First, if the
point to be interpolated falls in the middle of a voxel block,
then all eight points will be local to that block and hence
only one tree traversal is required. The other extreme case is
when the point falls exactly on the corner of a voxel block,
in which case eight tree traversals will be needed. There are
six remaining configurations which correspond to the case in
which the sampling point is on a voxel block edge along one
or two dimension. In this case the query order is particularly
important as we should insure as much locality as possible,
since a bad ordering might imply more tree traversals than
actually needed. In [16] this issue is addressed by caching
the lastly accessed block, but this still does not help if the
gathering order jumps from one block to another invalidating
the cached block. Instead, we precompute statically a traversal
order for all the possible configurations and at run-time we
simply select the optimal for the requested sampling point
position. In this way we guarantee the optimal reuse of tree
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Fig. 4: Bit-masking the key-set at each allocation level, coloured boxes indicate duplicate codes.

traversals without any caching and furthermore we eliminate
the unnecessary conditionals which a caching strategy implies.

IV. DENSE TRACKING AND MAPPING

We contribute with two dense volumentric SLAM pipelines
implemented with our octree library presented in the previous
sections. The first is the standard KinectFusion [25] pipeline,
where the world map is encoded in a implicit truncated
signed distance function (TSDF). Our second pipeline instead
is based on the occupancy mapping framework introduced
in [21], which we extend and refine in order to make it
suitable for incremental tracking and mapping. In fact, we
adopt the formulation of log-odds widely used in traditional
robotic occupancy mapping. While the two mapping methods
differ semantically, they both implicitly represent surfaces as
zero-crossings. Therefore, the reconstruction pipelines share
the same structure: i) a tracking stage to perform frame-to-
model alignment and recover the camera pose, which includes
ray-casting to extract a synthetic point-cloud from the model;
ii) a fusion stage to integrate the new sensor data into the map.

A. Notation

We denote the camera pose relating the camera coordinate
frame C to the World coordinate frame W as TWC ∈ SE3,
short T and further indicate the respective time step k with
Tk. Rk, Vk and Nk denote the input raw depth, vertex
and normal maps, respectively. Three dimensional points p =
[px, py, pz, 1]T are generally expressed in their homogeneous
coordinates. To ease the notation, we introduce the function
π(·) which performs dehomogenisation, perspective projection
and application of the intrinsics matrix. π−1(·) denotes its
inverse using the depth map. Finally, we use u ∈ R2 to
describe pixels in image frame.

B. Surface prediction and tracking

Different approaches are possible to track the camera
movement. KinectFusion adopts a variant of the well known
iterative closest point (ICP) [2] algorithm with point-to-plane
metric. Others, such as [6] and [5], have proposed to align
the new camera frame directly to the TSDF map, demon-
strating levels of accuracy on par with the current state-of-
the-art. While such techniques could be implemented in our
framework, in this work we opt for ICP alignment, as it can
be easily shared between the mapping approaches discussed

in Sections IV-C and IV-D. Hence, we minimise the following
energy function via Gauss-Newton:

Ek =
∑
u∈Ωk

‖(TkVk(u)−WV̂k−1(û))TWN̂k−1(û)‖2, (1)

where Ωk is the set of all pixels in image frame. û is the pixel
in the previous image corresponding to u in the current image,

û = π(T−1
k−1Tkπ

−1(u)). (2)

WV̂k−1 and WN̂k−1 are the vertex and normal maps repre-
sented in the world frame rendered into the previous camera.
We extract both of them directly from the volumetric repre-
sentation via ray-casting. For each pixel in image frame, we
cast a ray and find the closest zero-crossing along the ray.
To speed-up this step, we exploit our octree data-structure to
prune the ray-casting range. We use a modified version of
the hierarchical algorithm described in [20] which allows us
to march a ray starting from the tree root and navigating the
branches till we reach the first intersected leaf node. We then
continue the ray marching performing tri-linear interpolation
only when field values are sufficiently close to the zero-
crossing. Once an intersection has been found, we compute
the surface gradient via central difference directly on the
volumetric representation.

C. Signed-distance function mapping

Before proceeding with the actual map update, it must
be assured that the portion of the volume affected by it is
allocated. So the first step is to infer from the current depth
frame which voxel blocks will be effectively updated. A key
observation is that TSDF fields encode significant information
only within the truncation region±µ. In the literature, different
techniques have been proposed. [36] and [7] sweep over the
hierarchical grid projecting voxels from coarse to fine grain
resolution, marking which voxels fall within truncation region
of the current frame. A similar approach, proposed in [19],
is to allocate all the blocks that fall within the camera view-
frustum bounding box. However this technique significantly
over-allocates and requires garbage collection to deallocate
voxels that fall outside the truncation region. Instead, we
choose to follow the ray-casting method proposed in [26], [7].
For each pixel in the image frame, we march a ray along the
line of sight within the user specified µ bandwidth enclosing
the corresponding depth measurement.

Once the new parts of the scene have been allocated,
the measurement integration is done in the same fashion
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as in [24]. Each voxel at position p is projected into the
current depth image Rk with known pose Tk and its TSDF
value Fk(p) from the corresponding depth measurement is
computed. Mathematically:

η = Rk(π(T−1
k p))− pz,

Fk(p) = min(1,
η

µ
) iff η ≥ −µ, (3)

The computed TSDF sample Fk(p) is then integrated in the
global TSDF by means of block averaging.

D. Occupancy mapping

TSDF mapping works extremely well for surface recon-
struction but, compared to occupancy grid mapping, it does
not come with a probabilistic interpretation and it cannot
properly capture information about mapped, yet empty space.
On the other hand, classic occupancy grid mapping is not
able to properly express the map geometry as the surface
boundaries are not well defined. Loop et al. [21] bridge this
gap by introducing a new occupancy mapping framework in
which the surface geometry is well defined and hence it could
be used for 3D reconstruction retaining at the same time
all the semantic information of an occupancy grid. This is
achieved by setting the surface boundary where the occupancy
probability transitions from less than 1

2 to greater than 1
2 . The

consistency of such estimate is guaranteed by a b-spline noise
model which allows to overcome both theoretical and technical
difficulties arising from standard Gaussian noise. We refer
to the original paper for further discussion on its theoretical
aspect.

While the proposed approach works well for static scenes
and a static multi-camera configuration, it is not well fit for
SLAM applications. One of the reasons is that the quadratic
b-spline noise model has finite support, implying that a single
outlier measurement would cause erroneous holes that could
never be recovered. This means that the formulation cannot
be used for SLAM, where incremental fusion into a persistent
map is desired and outliers will occur sooner or later. More-
over, dynamically changing environments cannot be properly
handled for the same reason. Given the above discussion, we
alter the formulation proposed in [21] to make it suitable for
SLAM and dynamically changing environments.

We start with the model for the true depth mr given a noisy
measurement zr adopted from [21], in the form of a quadratic
b-spline, defined as:

p(mr|zr) = q(s) =


1
16 (3 + s)2, if − 3 ≤ s ≤ −1,
1
8 (3− s2), if − 1 ≤ s ≤ 1,
1
16 (3− s)2, if 1 ≤ s ≤ 3,

0, otherwise.

(4)

where s := (mr − zr)/σr denotes the distance from the
camera centred around the true distance and normalised with
the standard deviation σr of the measurement. Importantly,
we can now set σr to be proportional to r2 corresponding to
more realistic triangulation-based depth camera noise model
than assuming it constant.

Fig. 5: Example occupancy probabilities along a ray using the
analytic formulation [21] (with a slightly unrealistically large
depth uncertainty for visualisation purposes).

We can proceed to derive the occupancy probabilities
P (Sr = 1|zr) along the ray as

P (Sr = 1|Mr) =

∫ ∞
mr=0

P (Sr = 1|mr)p(mr|zr)dmr. (5)

Here, P (Sr = 1|mr) is modelled as zero in front of the
true surface, 1 from the true surface to 3σr behind, and then
followed by 0.5.

Conveniently, the above integral has an analytic solution

P (Sr = 1|Mr) = h(s) = qcdf(s)−
1

2
qcdf(s− 3), (6)

with

qcdf(s) =



0, if s < 3,
1
48 (3 + s)3, if 3 ≤ s ≤ 1,
1
2 + 1

24s(3 + s)(3− s), if 1 < s < 1,

1 1
48 (3s)3, if 1 ≤ s ≤ 3,

1, if 3 < s.

(7)

We visualise an example of this per-ray occupancy “measure-
ment” function in Figure 5.

We can now use occupancy measurements ok(p) associated
with the above values h(s) along every ray observing depth
for fusion into our octree-based map volume storing occupancy
values O(p) at each position p. We assume a uniform prior of
O0 = 1

2 . But rather than the multiplicative update following
direct application of Bayes’ theorem (as used in [21]), we
adopt the log-odds space, which is mathematically equivalent,
i.e. using the measurement log-odds lk to update the values
Lk−1 in the volume:

lk(p) = log
ok(p)

1− ok(p)
, (8)

Lk(p) = Lk−1(p) + lk(p), (9)

where L0 = log 0.5
1−0.5 = 0. A surface in log-odd space is

thus defined by the zero-crossing equivalently to the TSDF
formulation.

Since h(s) contains values of 0, which is neither desirable,
since related outliers won’t be recovered, nor feasible in the
log-odds formulation, we clamp h to the interval [Pmin, Pmax].
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In our experiments, we choose the admissible interval as
[0.03, 0.97].

Our second contribution to the Bayesian fusion model is a
windowed update step which introduces uncertainty propor-
tionally to the time difference between subsequent updates,
in order to accommodate for otherwise unmodelled effects,
most importantly dynamic scene content and uncertainty of
the tracking. Specifically, we apply a moving average before
each measurement is fused into the map. Thus, our final update
rule is defined as:

L+
k−1 = Lk−1(p)

1

1 + ∆t
τ

, (10)

Lk(p) = L+
k−1(p) + lk(p), (11)

where ∆t is the time difference since the last update for the
current cell and τ is a time constant. In our experiments we
chose τ = 5sec. Note that this also acts as a forgetting feature:
when ∆t→∞, O+

k−1(p)→ 0.5. In other words, we assume
that if we have not updated a specific cell for a long period
of time, we don’t know its occupancy state.

V. EXPERIMENTAL EVALUATION

In this section we will detail our experimental results.
All our tests have been performed within the SLAMBench
framework [23] on a Skylake i7-6700HQ CPU with 16GB of
memory, Ubuntu 16.10 and frequency scaling disabled. All the
software has been compiled with GCC 5.4.1. All the systems
used in this evaluation have been configured with 1cm voxel
resolution at the finest level and with depth only tracking –
to ensure a fair comparison both in terms of accuracy and
computational performance.

A. Tracking accuracy TUM/ICL-NUIM

We evaluate the accuracy of our pipelines across two widely
used datasets, i.e. TUM RGB-D [32] and the ICL-NUIM
[14]. The former provides RGB-D sequences with trajectory
groundtruth, estimated via a high frequency motion capture
system. Likewise, the latter provides synthetic RGB and depth
data, together with groundtruth poses. The metric chosen is the
root mean square error (RMSE) of the absolute trajectory error
(ATE), using Euclidean distances between the groundtruth
positions and the corresponding estimated positions [32]. For
a fair comparison, we use the same parameters throughout.

ATE (m)
Dataset TSDF OFusion InfiniTAM
ICL LR 0 0.0113 0.0305 0.3052
ICL LR 1 0.0117 0.0207 0.0214
ICL LR 2 0.0040 0.0050 0.1725
ICL LR 3 0.7582 0.0786 0.4858
TUM fr1 xyz 0.0295 0.0293 0.0273
TUM fr1 floor × × ×
TUM fr1 plant × × ×
TUM fr1 desk 0.1030 0.0995 0.0647
TUM fr2 desk 0.0641 0.0902 0.0598
TUM fr3 office 0.0686 0.0604 0.0996

TABLE I: Absolute trajectory error (ATE) comparison be-
tween our TSDF fusion, occupancy mapping and InfiniTAM.
Crosses indicate tracking failure.
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Fig. 6: Per-frame performance evaluation of InfiniTAM
(ITM), octree-based TSDF fusion (TSDF) and full octree-
based occupancy mapping (OFusion).

For our occupancy mapping, we use depth uncertainties pro-
portional to the square of the distance (σr = 4 cm at 2
m). Table I reports our experimental results. We compare the
two volumetric pipelines described in this paper, denoted as
TSDF and OFusion respectively, and compare to the state-
of-the-art volumetric pipeline InfiniTAM [16]. This has been
tested using the default tracker with depth-only tracking to
ensure a fair comparison with our solution. As we can see,
our two pipelines obtain accuracy levels on par with the state-
of-the-art. Interestingly, our occupancy-based fusion outper-
forms both TSDF and InfiniTAM in the long ICL LR 3 and
TUM fr3 office sequences. On some sequences, all systems
lose track completely, and on others, at least some systems
fail partly. Note that the extension to use combined geometric
and photometric tracking would be straightforward, and we
consider this future work.

B. Runtime performance

Figures 6 reports the runtime performance of each pipeline
benchmarked in the previous section. For each implemen-
tation, we provide timings for the depth fusion and ray-
casting stage, plus an aggregated time for the rest of the
pipeline which accounts for preprocessing and tracking. It
is worth stressing that we are comparing fully engineered
pipelines which have very different code-bases, hence part
of the differences in runtime performance are attributable to

Dataset TSDF OFusion
LR 0 7.67% 11.15%
LR 1 8.45% 13.68%
LR 2 13.77% 22.52%
LR 3 13.33% 17.68%

Dataset TSDF OFusion
fr1 xyz 1.95% 3.01%
fr1 desk 7.70% 8.81%
fr2 desk 10.15% 17.70%
fr3 office 12.50% 17.95%

TABLE II: Relative memory consumption compared to a pre-
allocated grid covering the same area at the same resolution.
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different implementation choices.
First, we want to highlight how our octree-based TSDF

mapping offers performance comparable or even superior to
the state-of-the-art InfiniTAM’s voxel hashing implementation.
Note that apart from the voxel allocation and retrieval, the
two pipelines are in fact very similar in principle. Clearly,
the traversal and interpolation strategies described in Sections
III-B and III-D allow us to amortise the overall cost of
querying the tree. Admittedly, the occupancy grid mapping
formulation is more expensive. This is inherent to the method
itself as the b-spline sampling and the log-odd update is more
expensive than the simple weighted average performed by
the TSDF method. Furthermore, occupancy mapping has to
process a larger amount of information as empty-seen space
is explicitly stored and updated. Additionally, finding the zero-
crossing in ray-casting is more efficient in TSDF compared to
occupancy mapping, since the distance encoding allows for
efficient sampling step size selection.

We also benchmarked Octomap on the test sequences used
in this experiment set, configured with 5cm voxel size, but we
omitted these results from Figure 6 for visualisation purposes.
Mapping times per frame range between 338ms (fr1 desk) to
over 1500ms (fr2 desk). The large performance gap compared
to our pipeline is attributable to the slower algorithm Octomap
employs, i.e. ray-cast based measurement integration, and a
lack of a proper parallelisation strategy. Oleynikova et al. [27]
propose various optimisations for ray-cast based map update
and demonstrate interesting speed-ups, but still requiring at
least 60ms per scan at 5cm voxel resolution. Notice that for use
cases in which a coarser map is suitable, other approaches are
possible. Saarinen et al. [30] demonstrate how using normal
distribution transform occupancy maps (NDT-OM) they are
able to achieve comparable results to Octomap while using an
8 times coarser grid, achieving 20 times faster measurement
integration.

In Table II we show memory usage of our TSDF and
occupancy fusion maps relative to a statically allocated grid,
as used in the standard KinectFusion algorithm. As expected,
the sparse data-structure allows for considerable savings in
terms of memory consumption, even in case of full occupancy
mapping.

C. Path planning

As a use case, we have analysed the mapping framework in
a path planning application for a multicopter Micro Aerial
Vehicle (MAV), with the same 1cm finest map resolution.
We used THE OPEN MOTION PLANNING LIBRARY (OMPL)
[33] to generate collision-free paths in our occupancy-based
environment. We used Informed RRT* [12] for the straight-
line segment planning. Furthermore, we compared our Octree
implementation with the OCTOMAP LIBRARY [35]. The times
needed to find the first feasible path for an obstructed 2.83 m
start-goal distance can be seen in Table III. They were obtained
on an Intel Core i7-6600U CPU at 2.60GHz, compiled on GCC
version 5.4.0, averaged over 10’000 executions.

Furthermore, we calculated a smooth trajectory from the
initial RRT* plans based on polynomial planning as described

time std dev min max
OFusion 12.6ms 14.6ms 4.29ms 109.6ms
Octomap 17.7ms 11.4ms 5.16ms 113.2ms

TABLE III: Timings for straight-line planning for a start-goal
distance of 2.83 metres averaged over 10’000 executions.

time std dev min max
OFusion 1.57ms 0.59ms 0.43ms 3.47ms
OctoMap 2.06ms 0.78ms 0.32ms 4.17ms

TABLE IV: Timings for the linear trajectory optimization
averaged over 1’000 executions.

in [28]. We fixed the start and goal position in both mapping
implementations and recorded the time needed to linearly
optimize a collision free polynomial trajectory. The timings
averaged over 1’000 executions are listed in Table IV. It can
be seen in the recorded timings in Table III and Table IV that
the straight-line planning and the linear polynomial trajectory
optimization is faster with our implemented method.

For illustration, we have plotted an example trajectory into
a map rendering in Figure 1. These results confirm that our
octree-based occupancy map is at least as fast at handling
spatial queries as [35], the de-facto standard used in research
for robotic planning.

VI. CONCLUSION

In this paper we have presented an efficient octree-based
dense SLAM system. Apart from supporting TSDF mapping,
we contribute an extension of fully probabilistic fine-grained
occupancy mapping: the occupancy map is not only used
for camera tracking, but enables real-time, in-the-loop path
planning on the very same representation. We experimentally
evaluate our formulation in a variety of sequences, demonstrat-
ing state-of-the-art accuracy and performance results, includ-
ing a comparison. We furthermore demonstrated the capabil-
ities for planning using a probabilistic planner and trajectory
smoothing. Importantly, efficient spatial queries as needed
for planning are intrinsically not supported by flat hashing
architectures as employed by competing SLAM systems. We
thus believe this work will help to further bridge the gap
between SLAM and down-stream operations and increase
related efficiency by sharing a map representation of wider
usefulness.

In future work, we will extend our framework in two di-
rections. First, we will explore more aggressive optimisations
to reach better run-time performance in case of occupancy
mapping. Second, we will integrate our solution on drone
platforms to performing fast, but safe navigation in cluttered
environments.

REFERENCES

[1] J. Bédorf, E. Gaburov, and S. Portegies Zwart, “A sparse octree
gravitational n-body code that runs entirely on the GPU processor,” J.
Comput. Phys., vol. 231, no. 7, pp. 2825–2839, Apr. 2012. [Online].
Available: http://dx.doi.org/10.1016/j.jcp.2011.12.024

[2] P. Besl and N. McKay, “A Method for Registration of 3-D Shapes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 14, pp.
239–256, 1992.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2017

[3] C. Burstedde, L. C. Wilcox, and O. Ghattas, “p4est: Scalable algo-
rithms for parallel adaptive mesh refinement on forests of octrees,” SIAM
Journal on Scientific Computing, vol. 33, no. 3, pp. 1103–1133, 2011.

[4] M. Burtscher and K. Pingali, “An efficient CUDA implementation of
the tree-based barnes hut n-body algorithm,” in GPU Computing Gems
Emerald Edition. Morgan Kaufmann, 2011, pp. 75–92. [Online].
Available: http://iss.ices.utexas.edu/Publications/Papers/burtscher11.pdf

[5] E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers, “Real-time
camera tracking and 3d reconstruction using signed distance functions,”
in Robotics: Science and Systems Conference (RSS), June 2013.

[6] D. R. Canelhas, T. Stoyanov, and A. J. Lilienthal, “Sdf tracker: A
parallel algorithm for on-line pose estimation and scene reconstruction
from depth images,” in 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Nov 2013, pp. 3671–3676.

[7] J. Chen, D. Bautembach, and S. Izadi, “Scalable real-
time volumetric surface reconstruction,” ACM Trans. Graph.,
vol. 32, no. 4, pp. 113:1–113:16, Jul. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2461912.2461940

[8] S. Choi, Q.-Y. Zhou, and V. Koltun, “Robust reconstruction of indoor
scenes,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2015.

[9] C. Crassin, F. Neyret, M. Sainz, and E. Eisemann, “Efficient rendering
of highly detailed volumetric scenes with gigavoxels,” in GPU
Pro. A K Peters, 2010, ch. X.3, pp. 643–676. [Online]. Available:
http://maverick.inria.fr/Publications/2010/CNSE10

[10] B. Curless and M. Levoy, “A Volumetric Method for Building Complex
Models from Range Images,” SIGGRAPH 96 Conference Proceedings,
pp. 303–312, 1996.
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[33] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, http://ompl.kavrakilab.org.

[34] T. Whelan, M. Kaess, and M. Fallon, “Kintinuous: Spatially
extended kinectfusion,” RSS Workshop on RGB-D: Advanced
Reasoning with Depth Cameras, 2012. [Online]. Available:
http://18.7.29.232/handle/1721.1/71756

[35] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: A Probabilistic, Flexible, and Compact 3D Map Repre-
sentation for Robotic Systems,” in Proceedings of the ICRA 2010
Workshop on Best Practice in 3D Perception and Modeling for Mobile
Manipulation, 2010.

[36] M. Zeng, F. Zhao, J. Zheng, and X. Liu, “Octree-
based fusion for realtime 3d reconstruction,” Graph. Models,
vol. 75, no. 3, pp. 126–136, May 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.gmod.2012.09.002

[37] Q.-Y. Zhou and V. Koltun, “Dense scene reconstruction with points of
interest,” ACM Trans. Graph., vol. 32, no. 4, pp. 112:1–112:8, Jul.
2013. [Online]. Available: http://doi.acm.org/10.1145/2461912.2461919


