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Abstract
Private communication over the Internet continues to be a
challenging problem. Even if messages are encrypted, it
is hard to deliver them without revealing metadata about
which pairs of users are communicating. Scalable com-
munication systems, such as Tor, are susceptible to traffic
analysis. In contrast, the largest-scale systems with meta-
data privacy require passing all messages through each
server, capping their throughput and scalability.

This paper presents Stadium, the first system to provide
metadata and data privacy while being able to scale its
work efficiently across many servers. Much like Vuvuzela,
the current largest-scale system that protects metadata, Sta-
dium is based on differential privacy. However, providing
privacy in Stadium is more challenging because distribut-
ing users’ traffic across servers creates opportunities for
adversaries to observe it in fine granularity. To solve this
challenge, Stadium uses a collaborative noise generation
approach combined with a novel verifiable parallel mixnet
design where the servers collaboratively check that others
follow the protocol. We show that Stadium can scale to
support over an order of magnitude more users than the
current state of the art, and cut the costs of operating each
server.

1 Introduction
Private communication is difficult on today’s Internet.
While there are many applications that let users encrypt
message content, encryption does not hide metadata: ad-
versaries can still learn who is communicating with whom,
at what times, and their traffic volumes. Metadata reveals
a great deal of information: indeed, NSA officials have
stated that “if you have enough metadata you don’t really
need content,” [36] and “we kill people based on meta-
data” [28]. For users such as reporters, whistleblowers,
and activists, higher privacy guarantees are critical.

Unfortunately, previous systems that hide metadata do
not scale to large numbers of users. Systems that leak no
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metadata at all, such as Riposte [12] and Dissent [13], re-
quire broadcasting all messages to all users or use computa-
tionally intensive Private Information Retrieval. Recently,
Vuvuzela [41] introduced an approach for protecting meta-
data based on differential privacy [18]. That is, each time
Alice sends a message to Bob, the adversary gains some
statistical information by monitoring observable variables
in the system (e.g., the traffic patterns between servers).
Vuvuzela provably bounds this information leakage by in-
jecting noise messages that obfuscate these variables, so
that all of the adversary’s observations would be almost
equally likely if Alice were not talking with Bob. Overall,
the system scales to support about 115,000 messages per
second. However, its design requires transmitting all mes-
sages through a single chain of relay servers, preventing it
from scaling beyond this. Moreover, at this peak rate, each
Vuvuzela server needs about 1.3 Gbit/sec of bandwidth,
leading to a high operating cost for each server [41, §8.2].
Both of these problems are serious roadblocks to deploying
Vuvuzela in practice.

This paper presents Stadium, the first system to provide
metadata and data privacy while efficiently distributing
its work over multiple servers. Stadium uses a similar
differential privacy definition to Vuvuzela, but scales to
support an order of magnitude more users. Although the
total cost of running Stadium is higher than Vuvuzela, more
individuals can operate servers at a much lower cost per
server, and the system can scale incrementally to provide
over an order of magnitude higher throughput in total.

Stadium builds on a parallel mixnet design [27] where
users select a fixed-length path (chain of servers) for each
message through the pool of available servers. This lets
Stadium scale linearly with the number of servers. Much
like in Vuvuzela, in addition to forwarding user messages,
each server also generates noise messages to hide traffic
patterns.

However, the key challenge in Stadium is protecting
the much higher number of observable variables its paths
expose. Unlike in Vuvuzela, no single server can generate
enough noise to hide all the variables, so Stadium must
rely on many servers working together to generate enough
noise. Moreover, malicious servers can discard the noise
generated by other servers, or modify messages to learn
about communication patterns. To address these problems,



Stadium introduces a novel verifiable parallel mixnet de-
sign, allowing servers to self-verify that other servers are
correctly preserving and mixing messages.

We implement a prototype of Stadium and deploy it on
Amazon EC2. We show that Stadium can scale efficiently
to hundreds of servers, enabling over an order of magnitude
higher throughput than Vuvuzela. Although Stadium’s
total bandwidth costs are higher than Vuvuzela, they get
distributed evenly across the servers, lowering the cost
of hosting a server. For example, to provide 1-minute
messaging latency for 2 million users, each server in a
Stadium deployment of 100 servers only needs to send at
about 1.5% of a Vuvuzela server’s traffic rate.

Bandwidth requirements are critical in practice. In
today’s Tor network, only 5% of relays (a few hundred
servers) offer more than 100 Mbps of bandwidth, and none
offer more than 1 Gbps [40]. With 100 Mbps per server,
Stadium can scale to over 500,000 messages per second
over hundreds of servers, while Vuvuzela would be limited
to around 8,000 messages per second (namely, Vuvuzela is
not designed to be deployed in this highly distributed Tor-
like approach). With higher bandwidth per server, Stadium
also continues to scale higher than Vuvuzela.

Finally, we formally analyze Stadium’s security using
differential privacy, taking into account the much greater
number of observable variables in the system. We show
that Stadium can achieve similar guarantees to Vuvuzela
(continued privacy even if a user sends tens of thousands of
messages), in the presence of powerful active adversaries.

To summarize, our contributions are:

• The first design for a metadata-private messaging
system that can scale work efficiently across hundreds
of servers. Our design enables an order of magnitude
higher throughput than prior systems.

• A novel verifiable parallel mixnet design built around
efficient protocols for verifiable shuffles and verifiable
message distribution.

• An analytical and experimental evaluation of Stadium
using differential privacy.

2 Goals
In this section we present Stadium’s key design goals: pro-
viding private messaging in face of powerful adversaries
while scaling to tens of millions of users.

2.1 Threat Model
Stadium assumes an adversary that controls some frac-
tion of its mixing servers. The system may be deployed
to resist any fraction of compromised servers (but effi-
ciency degrades as Stadium deploys to cope with more

malicious servers). The adversary may also control any
number of users. Adversary-controlled servers and clients
may deviate in any way from Stadium’s protocol, but non-
compromised servers and clients run bug-free implementa-
tions and are not vulnerable to side-channel attacks. We
design Stadium to resist passive and active attacks, that is,
we allow the adversary to monitor, block, delay, or inject
traffic on any network link at all communication rounds.

In terms of availability, Stadium is not resistant to wide-
scale denial of service (DoS) attacks. This is unavoidable
given our assumption that adversaries can block traffic,
which allows them to disconnect servers and users from
the network. However, Stadium guarantees that any DoS
attack will not risk its users’ privacy.

Cryptographic assumptions and PKI. Stadium relies on
standard cryptographic assumptions. We assume secure
public and symmetric key encryption, key-exchange mech-
anisms, signature schemes, and hash functions under the
random oracle model [4]. We further assume a public
key infrastructure, i.e., Stadium servers’ public keys are
known to its users, and that two communicating clients
hold a shared key. This can be performed using via Alpen-
horn [31], a system that allows two users to privately coor-
dinate a shared secret, or out of band.

2.2 Privacy
Stadium has similar a privacy goal to Vuvuzela [41]. It
aims to prevent adversaries from distinguishing between
communication patterns of its users, even if the users ex-
change many messages.

Informally, Stadium provides the following privacy guar-
anty for users communicating through non-compromised
clients: for any user, call her Alice, the adversary should
not be able to tell whether Alice communicates with Bob or
another random user, or even identify when Alice does not
communicate at all. We design Stadium to keep this guaran-
tee even if the attacker corrupts some servers and observes
traffic flowing through the system for a long time. We
use the following definition from the differential privacy
literature to analyze Stadium’s privacy guarantees [19]:

Definition 1. A randomized algorithm M is (ε, δ)-
differentially private if for any two adjacent inputs x
and y and for all sets of outputs S, Pr[M(x) ∈ S] ≤
eε · Pr[M(y) ∈ S] + δ.

The inputs to the algorithm (x and y) are the users’
communication actions in each round. We consider two
inputs adjacent if they differ only by one user’s, say Alice’s,
actions. One of the inputs represents Alice’s real actions
in a particular round (e.g., Alice sends a message to Bob),
while adjacent inputs represent hypothetical “cover stories”
(e.g., Alice sends a message to Charlie, or to no one). Real
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or not, the differential privacy definition requires that all
these stories will appear almost as plausible.

2.3 Scalability
Our scalability goal is to support tens of millions of simul-
taneous users on Stadium. This is a comparable level to
Tor, the most popular anonymity service available today.
To support a growing number of users, the system must
allow for incremental deployment. Namely, its throughput
should increase linearly with the number of servers. The
scalability goal therefore necessitates that only a small sub-
set of the servers will process each message, and represents
a departure from previous metadata-private systems.

3 Overview
In this section we present an overview of Stadium’s design
and motivate the different components in the system.

Sending and receiving messages. Communication
through Stadium takes place in rounds. Every fixed in-
terval, a new round begins to process a set of messages
Stadium accumulated from its clients. Incoming messages
are shuffled by Stadium’s distributed servers to unlink
them from their sender. Stadium borrows a dead-drop
communication strategy from Vuvuzela [41] amenable to
provable differential privacy. Dead-drops are virtual loca-
tions, hosted on the system’s servers, that are associated
with the anonymous conversations taking place. Dead-
drop locations are revealed after the messages are shuffled.
When exactly two messages reach the same dead-drop
in a communication round, the server hosting that dead-
drop exchanges their content. Finally, messages are sent
back through Stadium, where servers invert the shuffle
and return messages, such that two messages exchanged
at a dead-drop reach their intended recipients. To ensure
that the number of messages does not leak whether a user
communicates, clients send exactly one message every
round (if the user does not communicate, the client sends
a dummy message which will route back to the sender).
An overview of Stadium’s design is illustrated in Figure 1.
In order to communicate, Alice and Bob use a separate
dialing protocol, which allows them to coordinate a dead-
drop for every round as well as a symmetric key to encrypt
the content of their communication. One recent scalable
system for this task is Alpenhorn [31].

Parallel mixing. Given Stadium’s threat model that allows
compromised servers, shuffling messages securely and ef-
ficiently is a significant challenge. Traditional mix chains,
where each server processes all messages, fail to perform
at Stadium’s targeted scale. Instead, Stadium employs a
parallel mixing scheme, where each server processes a frac-

Figure 1: Stadium overview. Users send messages for a
communication round. Stadium’s servers work together
to shuffle the messages, verifying each other for correct-
ness. Shuffled messages are exchanged at dead-drops and
reversed through the system to the recipient user.

Figure 2: Stadium’s distributed parallel mixing. Users
determine a message path by picking an input chain and
output chain.

tion of the input messages, shown in Figure 2. Messages in
Stadium travel through one of multiple paths afforded by
the system. In each round, the user selects a random path
for its message through the system. A path selection con-
sists of picking an input and output mixing chain. In the
input chain, messages are mixed with all other messages
that entered the system through the same chain. Messages
exiting the input chain are distributed to output chains,
where they are again mixed, this time with messages ar-
riving from all input chains. The last server of the output
chain emits messages to their dead-drops. Parallel mixing
allows Stadium to efficiently process messages traveling
through different chains in parallel, however, comes at the
cost of imperfect mixing. The connections between input
chains and output chains restrict the possible output permu-
tations. Stadium addresses these concerns through means
of differential privacy.

Verifiable Processing. Stadium provides differential pri-
vacy for user communication by adding noise in the form
of fake messages. It is infeasible for a single server to
generate enough noise for the entire system, so Stadium
servers must rely on each other for collaborative noise gen-
eration. Additionally, malicious servers may attempt to
discard noise messages before they are mixed with user
messages. To mitigate this risk, Stadium uses a number
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of verifiable processing techniques to allow honest servers
to verify that others follow the parallel mixing protocol.
Messages input to the system are checked using a crypto-
graphic proof of knowledge. Mix chains provide proofs of
permutation using verifiable shuffles, a cryptographic prim-
itive common to e-voting. Finally, a verifiable distribution
primitive based on cryptographic signatures allows servers
to ensure all messages are correctly collected following the
distribution step. Since verifiable processing is expensive,
Stadium takes care to limit its use to only when necessary.

Presentation outline. Section 4 describes the round setup.
Section 5 describes the verifiable processing pipeline. Sta-
dium’s provable privacy guarantees are shown in Section 6
and Section 7. Section 8 extends Stadium for fault toler-
ance. Section 9 and Section 10 describe our implementa-
tion prototype and evaluation.

4 Round Setup
In this section we describe the round-setup mechanisms.
Specifically, how servers arrange in mix chains and estab-
lish per-chain keys, and how clients encapsulate messages
before emitting them to the system. We focus on the case
where fault-tolerance is not needed (e.g., in smaller de-
ployments). Section 8 discusses possible adaptations to
tolerate faults.

4.1 Arranging in Mix Chains
At the beginning of every round, participating servers
jointly decide on a random seed which sets their arrange-
ment into mix chains. Using this seed servers form in
fixed-length mix chains (see illustration in Figure 2). Each
server appears exactly once in each of the available po-
sitions inside the chains, this guarantees that no server
will need to process more than one message batch simul-
taneously. In Appendix A we describe the algorithm for
arranging in these chains given the random seed. To sim-
plify our presentation we refer to a chain by its first server,
i.e., chain i is the chain that begins at server i (this is cor-
rect since each server appears first at exactly one chain).
By reordering the servers at every round, Stadium makes
it simple to add new servers to the system and supports in-
cremental deployments, and also makes it challenging for
attackers to compromise entire chains (rounds are short).

It is important to ensure that adversaries cannot set the
order of the servers, or they could form all-compromised
chains. To establish a random seed in a secure manner,
despite malicious servers, we use the commitment-based
protocol as outlined in [7]. To prevent the adversary from
modifying coordination messages, the seed-selection pro-
tocol runs over secure channels (e.g., using TLS) estab-
lished using the servers’ long-term public keys which are

distributed via a public key infrastructure (see Stadium’s
assumptions in Section 2.1).

4.2 Round Keys
Each server creates an ephemeral public/private ElGamal
key pair for each round, all servers in the network use the
same cyclic group G and generator g (e.g., configured into
the server/client applications). Let us denote the private
key of server i by si, so the public key is gsi . A client
retrieves the public keys from all servers, and computes
a public key for each mix chain, which is the product of
the public keys in the chain: for mix chain i, the client
computes pki =

∏
i≤j≤i+l g

sj = g
∑i+l
j=i sj .

Notice that while clients perform the regular ElGamal
encryption algorithm (using public key pki), all servers
must contribute decryption shares using their own private
keys (i.e., decrypt using si) [20]. The product of all de-
cryption shares reveals the plaintext.

4.3 Message Encapsulation
Users decide on a path to send their message through the
mixnet by designating an input chain, an output chain,
and a dead-drop. We consider a user’s message as two
separate components. The metadata consists of the path
information (i.e., input, output chain and dead-drop). The
content component consists of the actual data the user
wants to send to the recipient.

Stadium uses verifiable processing to ensure that mes-
sages are not tampered with throughout the protocol. Since
this processing is expensive, Stadium aims to limit its use.
User communication patterns are revealed by the metadata
component of their message (e.g., two messages sharing
a dead-drop are in a conversation). On the other hand,
the content component does not reveal any information
about the recipient since it is padded to fixed length and
encrypted with a key shared between the users. Thus, Sta-
dium performs verifiable processing only on the metadata
component of the message.1 This provides significant sav-
ings in processing time since the content size is larger
than the metadata. To accommodate the different process-
ing requirements between the metadata and content, the
components are encrypted using different schemes.

Metadata. The metadata is further split according to
the mixing chain. The input chain’s metadata holds the
output chain’s id. The output chain’s metadata holds the
dead-drop id, and is included inside the content component
for the input chain. It is therefore important to bind the
content of the input chain to its metadata (since that content

1Since the content component is not verifiably processed, malicious
servers can corrupt it and deny service, but this falls well within the scope
of Stadium’s threat model (e.g., malicious servers can block the network).
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later sets the destination dead-drop). To do that, the input
chain’s metadata also includes a symmetric key, which the
client uses to authenticate the input chain’s content. The
symmetric authentication code is included in the content
and verified at the end of the input chain by its servers (we
provide the details in Section 5). The metadata is encrypted
with the mixing chain’s public key and revealed at the end
of the chain to find where the content should be distributed
to. Public key encryption of the metadata is necessary for
verifiable shuffling.

Content. The content is encapsulated in order to allow
servers to re-randomize the output as they shuffle mes-
sages. If servers did not re-randomize the content, the
secret permutation would be revealed simply by observing
the input and output content batches. To encapsulate the
content, clients use a hybrid onion encryption scheme. For
each server on the chain, starting from the last, the client
encrypts the content using a fresh ephemeral symmetric
key and then encrypts the symmetric key using the server’s
public key. The output chain metadata is added inside
the onion encryption layer of the last server in the input
chain (i.e., it is revealed before the first server of the out-
put chain). Servers store the ephemeral symmetric keys
revealed in the forward direction in order to re-randomize
the message in the return direction.

5 Verifiable Processing Pipeline

In this section we present the mechanics behind Stadium’s
message processing following the phases in Figure 3.

To provide differential privacy independently of other
users’ traffic patterns, Stadium servers collaboratively gen-
erate noise messages (i.e., cover traffic) when the round
begins (phase 1 in Figure 3). Efficiently generating noise
to provide Stadium’s privacy guarantees is the focus of
Section 6. This section focuses on the verifiable process-
ing of messages inside the Stadium, where the message
batch is decided and messages are mixed though the input
chain, distribute to output chains, and then mixed again
(phases 2-5 in Figure 3). At the end of the verifiable
processing pipeline, messages reach the dead-drops and
are exchanged as described in Section 3. Messages then
travel back through the mix chains to their recipient user
(phases 6-7 in Figure 3). These two phases are not verified,
since when messages reach the dead-drops they are already
anonymous.

In-chain broadcasts. Our processing below uses message
broadcasts, which are materialized by sending a unicast
message to each recipient. To provide a viable design, we
restrict broadcasts in the processing pipeline to the scope
of one mix chain. Thus the communication cost of each
broadcast is constant (the length of the chain is fixed, and

independent of the number of servers). Importantly, our
design copes with malicious senders who send different
messages to subsets of the recipients.

5.1 Message Input

Stadium must ensure that adversaries do not tamper with
messages as they enter the system, or attackers could create
traceable patterns before the messages mix. For example,
an attacker that injects two duplicates of a user’s message
can learn its destination by observing which dead-drop is
accessed at least 3 times. Since Stadium uses malleable
encryption to facilitate message re-randomization after
shuffling (see Section 3), attackers can inject seemingly
different copies of the same message.

Verification. The servers in the input chain verify, in
zero-knowledge, that the sender knows the plaintext of
the message emitted to Stadium. Thereby ensuring that the
message is not a result of attacker forgery. Given our encap-
sulation technique, it is sufficient to verify that the sender
knows the metadata for the input chain, since this means
that the sender knows the output chain and can decrypt the
dead-drop ID. Namely, we verify that the sender had set the
path of this message. The metadata is encrypted with the
input chain’s ElGamal public key. To prove ownership of
the message, senders compute a proof of knowledge of the
plaintext [30] converted via the Fiat-Shamir heuristic to be
non-interactive [22] and attach the proof to their messages.

The first server in the input chain receives the messages
and proofs, and broadcasts the message batch to all servers
on its chain to verify. Each server discards duplicates and
messages without proofs, and then keeps the remainder as
the message-batch for this communication round.

5.2 Shuffle

In the mixing phases (phases 3 and 5 in Figure 3) each
server shuffles the message batch that it has, proves that it
processed the messages correctly, and passes the shuffled
messages to the next server on the chain. See Figure 4.
The shuffling procedure also randomizes the outputs such
that an attacker observing both inputs and outputs cannot
learn the permutation and invert it. (To randomize the
metadata, encrypted with ElGamal, we take advantage of
the malleability property of ElGamal cypher-texts.)

To shuffle the metadata we use a verifiable shuffle [3].
This allows the shuffler to prove to all other servers on
its chain that the output is a re-randomized permutation
of the input without revealing any knowledge about the
permutation itself (i.e., a zero knowledge proof). If one
of the servers does not accept the proof, then it does not
contribute its decryption shares, thus blocking all messages
in the batch from continuing their path through the mixnet
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Figure 3: Stadium’s design through 7 processing phases. Noise is generated and entered with user messages enter in
phases 1 and 2. The messages go through the input chain in phase 3, where each node performs a verifiable shuffle;
then they are distributed in phase 4 to the output chain, where they mix with messages from all input chains in phase 5.
Messages reaching the same dead-drop are exchanged in phase 6. Lastly, messages are returned to users by reversing
shuffle permutations in phase 7, denoted by the dashed arrows.

and terminating the communication round. This guarantees
that as long as there is one honest server in the chain,
then either all messages in the batch are correctly shuffled
or the communication round is aborted (so as to avoid
compromising users’ privacy).

The content of messages is shuffled under the same
permutation as its metadata, but needs not be verifiably
shuffled, since it does not determine the message’s path and
destination. (Unlinking the content of pre- and post-shuffle
messages happens automatically when the mix server peels
its layer of the hybrid encryption, see Section 4.3.)

Verification. The verifiable shuffle technique in [3] allows
using the Fiat-Shamir heuristic [22] to avoid interactions
between the prover and verifier. This allows the shuffling
server to compute the proof and then broadcast its output
to all other servers in the chain who confirm that it is some
permutation of the message batch.

Decryption at the end of the chain. After the last shuffle
in the mix chain is verified, each server computes the
decryption share for each message’s metadata and sends
it to the server at the end of the chain. If all servers in the
chain contributed shares, then the last server can decrypt
the messages’ metadata (by multiplying all shares, see
Section 4.2) to reveal the next hop in the message’s route
(an output chain or a dead-drop).

5.3 Distribution
In the distribution phase (phase 4 in Figure 3) the servers on
the output chain receive the parcels of the message batch
from the input chains. The distribution phase ensures that
all messages were correctly distributed. Namely, that (1)

Figure 4: Verifiable shuffle in three steps.

the last server on the input chain does not modify messages
before it distributes them to their output chains, and (2) the
servers starting the output chains only incorporate valid
messages into their new message batch.

The verifiable distribution protocol, illustrated in Fig-
ure 5, therefore has two steps. First, all servers in the input
chain agree on the parcel (message set) that they distribute
to each of the output chains. Second, all the servers in the
output chain verify that they received valid parcels (i.e.,
that parcels include exactly the messages that the servers
in the input chain agreed on).

Agree on parcels (input chain). To agree on valid parcels
for distribution to each output chain, the last server in the
input chain broadcasts the decrypted messages to the other
servers on its chain. The servers verify that decryption
is correct2. The servers also verify that the content (i.e.,

2The last server in the input chain broadcasts the decrypted metedata
for each message together with the randomness used to encrypt it. Servers

6



Figure 5: Verifiable distribution in two steps.

data relayed to the output chain) is correctly authenticated
by deriving the symmetric authentication key from the
metadata (see Section 4.3). If a message’s content is in-
valid, it is discarded (so as not to risk user privacy) and
the servers reveal their re-randomization factor for that
particular message, allowing to detect whether one of the
servers diverted from the protocol. In this case honest
servers in the input chain identify the malicious server,
and discard the message batch to prevent the round from
moving forward.

Each server in the input chain that verified the message
batch uses the message’s metadata to divide the batch into
the parcels that will distribute to the output chains. Servers
in the input chain sign the parcels and send their signatures
to the server at the end of their chain. If that server did not
modify the set of messages, then all servers in the input
chain sign the same parcels.3

Verify parcels (output chain). The server at the end of the
input chain sends each parcel, together with the signatures,
to the server that starts the parcel’s output chain. That
server then broadcasts the message batch and signature to
the rest of the servers in the output chain, which validate
the signatures over the parcels from each input chain.

6 Hiding Observable Variables

In this section we identify the observable variables that
Stadium exposes, and describe how servers generate cover
traffic to obscure these variables.

in the input chain then check that encryption with the chain’s public key
yields the original input set.

3Messages within a parcel are ordered and then signed, such that hash
computation is consistent across servers.

6.1 Observable Variables

Attackers may monitor the communication between all of
Stadium’s servers and users. Since all messages that enter a
mix chain must also exit that chain (since message process-
ing is verifiable), it is sufficient to analyze the information
leak in the following types of links: (1) from the user to
the input chain, (2) from the input chain to output chain,
and (3) from the output chain to the dead-drop. (On the
return path the origin of a message is already anonymous).
We design Stadium to minimize the information leaked to
attackers through these links.

First, clients send a message at every round regardless
of whether the user is active in a conversation. Therefore,
observing a user sending a message does not leak any
information about their conversations.4

Second, adversaries may monitor the traffic emitted
from the user’s input chain. Although the traffic volume
from the input chain does not directly imply the user’s
communication patterns, attackers may still use this infor-
mation to infer on the user’s output chain. By identifying
a user’s output chain and monitoring the traffic emitted
from it, the attacker may learn the users communication
patterns, as we next describe.

Third, adversaries may monitor the link between the out-
put chain and the dead-drop. They can then identify when
two messages reach the same dead-drop, indicating that
the dead-drop is employed in a conversation, whereas if
only one message reaches the dead-drop in a conversation
round, then that means it is used by an idle user (who is not
currently involved in a conversation). If a message is sent
to a dead-drop hosted on an adversary-controlled server,
the adversary learns the dead-drop access count as well as
the identity of the server that outputs the message to the
dead-drop (at the end of the parallel mixnet).

We therefore define three classes of observable variables
that are affected by changes in user communication pattern:

Input-output chain traffic, IOxi . The amount of traffic
emitted from input chain x to output chain i.

Single access variables, αi. The number of dead-drops
that receive exactly one message where that message was
output from chain i. There are m single access variables.

Double access variables, βi,j . The number of dead-drops
that receive two messages, where one message was output
from chain i and the other from server j. There are

(
m
2

)
=

m2−m
2 double access variables.

4Stadium does not attempt to obscure the fact that a user uses the
system, it only hides its users’ communication patterns.
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6.2 Noise Distributions

In order to obscure the observable variables that Stadium
exposes to attackers, servers inject noise messages to the
system. We define the following two categories of ran-
dom variables. The single-access noise variable αxi is the
number of messages that travel through input chain x and
output from server i and reach a random dead-drop (such
that the chance that it is used by any other message is neg-
ligible). The double-access variable βx,yi,j is the amount
of pairs of noise messages that reach the same dead-drop,
where one message in the pair travels through input chain
x and output chain i and the other travels through input
chain y and output chain j.

The servers draw each of these variables independently.
We cannot produce negative noise (i.e., remove user-
messages), nor can we send use a send a fraction of a
noise message. Hence we must use a discrete non-negative
distribution.

Stadium uses the Poisson distribution for noise gener-
ation, αxi ∼ Pois(λ1) and βx,yi,j ∼ Pois(λ2). The Poisson
distribution is well suited to Stadium for two main reasons.
First, the additive property5 of Poisson distributions makes
it easy to reason about the collaborative noise distribution
from summing independent samples generated by Stadium
servers. Second, since Poisson distributions are discrete
and non-negative, we do not need to handle rounding, es-
pecially for distributions with mean near zero. In Section 7
we select the parameters λ1, λ2 such that the aggregate
noise (generated by all servers) provides Stadium’s privacy
guarantees.

Noise covering IOij . Each server generates noise to cover
the IOxi variable via αxi and βx,yi,j , β

y,x
j,i (for any y, j, i.e.,

all noise messages that travel via input chain x and output
chain i). Using the distribution’s additive property we find:
αij +

∑
x,y β

i,x
j,y + βx,iy,j ∼ Pois(λ1 + 2mλ2). Multiplied

by the number of servers, we find that IOxi is covered by
noise that distributes Pois(mλ1 + 2m2λ2).

Noise covering αi. Each server generates noise to cover
this variable via the αxi variable (for any x, i.e., all single-
access messages emitted from output chain i). Therefore
the amount of noise covering the observable variable αi
distributes m

∑
x α

x
i = Pois(m2λ1).

Noise covering βi,j . Similarly, we find that the amount of
noise that each server sends for covering the double-access
observable variable βi,j is

∑
x,y β

x,y
i,j + βy,xj,i and using all

servers in the system that noise distributes Pois(2m3λ2).

5If x ∼ Poison(λ1) and y ∼ Poisson(λ2), then x + y ∼
Poisson(λ1 + λ2).

7 Privacy Analysis
In this section we analyze Stadium’s privacy guarantees.
Our differential privacy goal (defined in Section 2) is to
keep any adjacent communication instances almost equally
likely. Where adjacency means that one client changes its
traffic pattern: by selecting a different output chain or a
different dead-drop (or both). For this purpose Stadium
servers inject Poisson distributed noise messages to the
system (see Section 6). We therefore begin our analysis
by finding the differential privacy guarantees that Poisson
noise provides.

Theorem 1. A mechanism with Pois(λ) noise is (ε, δ)-
differentially private with ε = ln(1 + c

√
λ+1
λ ) and δ =

Pois(λ;λ− c
√
λ) + Pois(λ;λ+ c

√
λ). (Where a positive

value c that allows to trade higher ε for lower δ.)

Proof. Given in Appendix B.

We next analyze the privacy guarantees that the input
and output chains provide, compose them together and ana-
lyze the guarantees in case that some servers are malicious
and over many communication rounds.

7.1 Input-chain
Adversaries can monitor the users’ communication links
and observe the input chains that they select. The purpose
of the input chains is to hide each user’s selection of output
chain. In this subsection we analyze the guarantees of the
input chain in terms of differential privacy. We consider
two communication instances to be adjacent if they differ
by the output chain selection of one user, call her Alice.

Clients select output chains uniformly. Since Stadium
makes m chains available to users (m is the number of
servers), the probability that Alice uses a specific output
chain in a particular round is 1

m . However, the adversary
can observe the traffic volumes from Alice’s input chain
to all output chain and gain statistical information about
which output chain Alice is more likely to have used, see
Figure 6. This information is captured by the observable
variable IOxi defined in Section 6.1, where x is Alice’s
input chain and i her output chain. The amount of noise
obscuring this variable distributes Pois(mλ1 + 2m2λ2)
(see details in Section 6.2). We apply Theorem 1 to find
the input chain’s ε, δ guarantees.

7.2 Output Chains
Output chains mix user messages with noise to obscure
dead drop access patterns, namely adversaries that man-
age to corrupt dead drop-hosting servers can learn from
which output chain each dead drop is accessed. If they
know Alice and Bob’s output chains, they can then find
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Figure 6: Adversary gains information about Alice’s mes-
sage output chain by observing a non-uniform distribution
to parcels in her input chain.

whether any dead drop was accessed from these chains and
gain some information on the existence (or nonexistence)
of communication between them. Let i denote Alice’s
output chain. Leakage of this information is captured by
the observable variables αi (in case that Alice does not
communicate), and βi,j (in case that she communicates
with Bob, who uses output chain j).

In Section 6.2 we find that the amount of noise covering
αi distributes Pois(m2λ1), and the amount of noise cov-
ering βi,j distributes Pois(m3λ2). We apply Theorem 1
to find the ε, δ guarantees for both types of observable
variables.

7.3 Input and Output Chain Composition

The access patterns to dead drops from output chain i only
change when a user or his/her peer sends a message via
output chain i. Users select an output chain uniformly
out of m available chains, thus the probability of a user
to select any particular output chain decreases linearly
with the number of servers in the system. The adversary
might monitor users’ input chains to infer on their output
chains. The differential privacy analysis in Section 7.1
allows to bound the adversary’s advantage. Let εx, δx
denote the differential privacy properties of input chains.
The probability of an adversary to guess Alice’s output
chain by observing communication on her input chain is
thus bounded by p =

eεx
m + δx. This probability captures

the adversary’s uncertainty of a message’s route. The
following theorem allows to adjust the differential-privacy
guarantees provided by Stadium’s output chains given the
adversary’s uncertainty.

Theorem 2. A mechanism that provides (εk, δk)-
differential privacy with probability pk (where

∑
k pk =

1), is (ε′, δ′)-differentially private where ε′ = ln(
∑
k pke

ε
k)

and δ′ =
∑
pkδk.

Proof. Given in Appendix C.

In our case, the output chain mechanism provides
(εi, δi)-differential privacy if the attacker knows to asso-
ciate the output chain to the communicating user, i.e.,
with probability p. In contrast, if the attacker does not
succeed to make this association, i.e., with probability
1 − p, the monitored output mechanism is agnostic to
the user’s traffic, i.e., ε and δ are zero. We find that the
combination of input and output chain therefore provides
ε′ = ln(1− p(eεi − 1)) and δ′ = pδi differential privacy.

Single-access observations. The differential privacy guar-
antee of Alice’s the input chain x suggests that the at-
tacker learns her output chain with at most probability p =
eεx

m + δx. Denote by ε1, δ1 the differential-privacy proper-
ties of Stadium’s output chain for hiding the single-access
patterns to the dead drop. We adjust these values using
Theorem 2 and find that: ε′1 = ln(1− ( e

εx

m +δx)(e
ε1−1)),

and δ′1 = ( e
εx

m + δx)δ1.

Double-access observations. Alice’s output chain af-
fects m observable variables, one for each possible out-
put chain that her peer may choose. Therefore guessing
the double-access observable variable affected by Alice’s
message is more challenging than just guessing her out-
put chain. We bound the probability that adversaries
succeed in guessing the correct variable to monitor by
providing them additional knowledge, let us assume that
an adversary knows that if Alice is talking with some-
one, then her peer is Bob. Therefore, the adversary only
cares about finding Alice and Bob’s output chains. The
probability for that is bounded by 2p2. Denote by ε2, δ2
the differential-privacy properties of Stadium’s output
chain for hiding the double-access patterns to the dead
drop. We adjust them using using the above theorem
and find that ε′2 = ln(1 + 2( e

εx

m + δx)
2(eε2 − 1)), and

δ′2 = 2( e
εx

m + δx)
2δ2.

7.4 Malicious Servers
Our analysis above assumed that all servers contribute their
fair share of noise to Stadium. However, malicious servers
may deviate from the protocol and refrain from injecting
noise. In order to generate enough noise to provide the
guarantees above, despite an expected f -fraction of mali-
cious servers, each honest server uses λ′1 = λ1

f , λ
′
2 = λ2

f
as the means for generating single- and double-access
noise.6

Our analysis also assumes that in every chain there is
at least one honest server that correctly shuffles messages.

6Attackers may also deviate from the protocol by generating noise
according to another distribution, but we assume that attackers can al-
ways identify and discard their own noise. Thus we only care for noise
generated by honest servers.
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However, experience suggests that for wide-scale deploy-
ments this is often not the case (e.g., see for Tor [15]).
Instead our model assumes that a server is corrupt with
probability f , and therefore a chain of l servers is corrupt
with probability f l. Attackers may get lucky, and at some
communication rounds corrupt multiple chains, while in
other rounds it might happen that no chain turns corrupt
(i.e., each chain has one honest server). We compute the
probabilities for each combination of number of corrupt
input and output chain and adjust Stadium’s differential
privacy guarantees (ε′1, δ

′
1, ε
′
2, δ
′
2 above) using Theorem 2.7

7.5 Communication Rounds

Our system exposes multiple variables, specifically, adver-
saries can observe the single-access pattern to dead drops
from any of the m output chains, and the double-access
pattern to dead drops from any of the m2

2 pairs of output
chains. To compose these variables together we leverage
the following key property of Stadium.

Theorem 3. Between any two adjacent inputs there are at
most two single access variables and two double access
variables that change.

Proof. Given in Appendix D.

The theorem above bounds the number of variables that
may leak information to the adversary at two single access
variables and two double access variables. All other vari-
ables do not change (and therefore do not leak information).
We compose these variables together using the Sequential
Composition theorem in [33]. The theorem allows us to
calculate the differential privacy guarantees of Stadium
when the adversary can observe multiple variables by sum-
ming their ε and δ parameters. We find that for a single
round Stadium provides ε = 2(ε′1 + ε′2), δ = 2(δ′1 + δ′2)
differential privacy.

Conversation over multiple rounds. Stadium allows
users to interactively communicate over multiple commu-
nication rounds. Adversaries may constantly monitor the
system to learn information about users across multiple
rounds, possibly perturbing the system each round (e.g.,
knocking Alice offline) based on observations in earlier
ones. This scenario is known as adaptive composition in
the differential privacy literature [19] and a similar chal-
lenge was handled by the Vuvuzela system [41]. The
composition of k rounds is also differentially private, as
we next describe in Theorem 4. The parameter d allows to
trade higher ε for lower δ.

7In practice, to efficiently compute Stadium’s guarantees we assume
that if more than 10% of the chains are compromised, then all chains are
compromised.

Figure 7: Stadium privacy guarantee after 105 communi-
cation rounds as a function of noise per server.

Theorem 4. Consider an algorithm M providing ε, δ dif-
ferential privacy, then M provides ε′, δ′ differential pri-
vacy after k rounds with parameters: ε′ = ε

√
2kln(1/d)+

kε(eε − 1) and δ′ = kδ + d, for any d > 0.

Proof. Direct from Theorem 3.20 in [19].

7.6 Noise Volumes in Practice
We apply the analysis above to find the best noise distri-
bution (i.e., the parameters λ1, λ2) for deployments of
m = 100, 300, and 1000 servers, and for different budgets
of noise messages sent by each server. Namely, given a
strict limit for δ ≤ 10−4, wish to minimize eε (by picking
the selecting λ1, λ2).

Figure 7 plots our results after users communicate
through 105 rounds. In this plot Stadium chains have 8
servers, and the system is deployed to resist 25% of col-
luding servers. We find that with only 10K noise messages
per server, a 100-server Stadium deployment ensures that
Alice talking to Bob is no more likely than twice as likely
than Alice not talking to anyone. (A comparable privacy
guarantee with Vuvuzela requires 20× the amount of noise
per server.) The amount of noise that each server needs
to generate decreases with deployment size, converging to
about 4K noise messages per server with a 1000 servers
deployment.

8 Fault Tolerance Extension
Fault tolerance becomes increasingly important as Stadium
scales to utilize more servers. Namely, users should be
able to communicate despite a few servers going abruptly
offline. Stadium naturally recovers from such faults at the
next communication round, since the faulty server will not
participate in the round setup protocols (see Section 4). We
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next extend our design to function despite some servers
disconnecting in the middle of the round.

To allow the system to recover from faults, each server
stores shares of its private ephemeral round key at a desig-
nated set of recovery servers [37]. Servers in the recovery
set keep a connection with their subject to identify when
it goes offline. When a server in the recovery-set realizes
this event, it sends its share of the failing server’s key to
others. Only if all servers in the recovery set provide their
shares, then the server’s ephemeral round key is recovered
and allows a peer server, e.g., the predecessor of the failing
server in the mix chain, to take the failing server’s place
in the processing pipeline (i.e., decrypt the metadata and
content).

Balancing security and efficiency. Fault tolerance allows
a colluding “recovery set” of servers to reveal a honest
server’s private key, and therefore remove the noise it intro-
duces to the system, revert its shuffles, etc. Using a large,
randomly chosen, set of servers for recovery allows for bet-
ter security, yet costs in efficiency since these servers must
monitor the subject to identify when it fails. To balance
these two requirements we set a server’s recovery-set to
be all other servers included with it in mix chains. These
servers keep a connection with the subject server anyway
in order to prove and verify shuffles through the round;
monitoring piggybacks on these sessions.

Importantly, since our threat model allows the attacker
to disconnect the link between any pair of servers, attack-
ers can exploit the fault tolerance mechanism to persuade
even an honest recovery-set to disclose a server’s key by
disconnecting it. To mitigate this risk each server in the
recovery set may disclose a secret share for no more than
one server per chain in each round. Therefore, if a server
identifies that one of its chains has two faulty servers, the
round is aborted (Stadium recovers at the next round, as
we described above).

9 Implementation
We implemented a prototype of Stadium to evaluate its
performance and feasibility of deployment. Our system’s
control and networking logic is implemented in Go, while
the underlying verifiable processing protocols, described in
Section 5 are implemented in C++. In particular, our C++
code implements the verifiable shuffling protocol in [3]
extended for non-interactive proofs via the Fiat Shamir
Heuristic and instantiated over a 1536-bit prime order
group. We believe that our processing efficiency may be
improved by instantiating the protocol over elliptic curves.

Our implementation uses OpenMP to parallelize differ-
ent parts of the processing pipeline. Most steps of the
verifiable computations independently process each mes-
sage in the batch (see Section 5), and can therefore take

Figure 8: Processing speedup with number of cores

advantage of multiple available cores.
The implementation of the system logic contains less

than 3000 lines of Go and C++ code (atop of existing li-
braries that our implementation uses, such as NTL [38]).
We deploy our prototype over 10 servers, with chain length
of 8 servers, on Amazon EC2 to ensure that it can be
feasibly deployed on today’s hardware and test the correct-
ness of our implementation. Our prototype currently does
not support message input, threshold decryption, or fault
tolerance.

10 Evaluation

We evaluate the performance of Stadium by extrapolating
the performance of our 10 server, chain length 8 deploy-
ment to larger deployments. Almost all inter-server com-
munication in Stadium is with respect to the chain length,
with the exception of the distribution phase. We find that
the CPU utilization is the dominant factor in Stadium’s
performance, and network I/O usage can be overlapped
with this processing (i.e., one message batch is transmitted
while another is being processed). Hence we expect the la-
tency of a 10 server, chain length 8 deployment to provide
a good estimate of the system’s real performance even for
large deployments with chain length 8. In the future, we
would like to deploy our system at larger scale to remove
the need for extrapolation.

Single server performance. We first measure the time
of a single mix-server to process a 100K message batch
size. We evaluate the performance with different number
of available cores. Our results, illustrated in Figure 8,
show that Stadium can significantly benefit from better
server hardware. Processing times show a linear speedup,
and provide evidence that Stadium will continue to scale
beyond the 36 cores currently available for EC2 machines.

Scaling to large deployments. We now turn to evaluate
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Figure 9: Stadium message latency as a function of number
of connected users

different deployments of Stadium and compare with Vu-
vuzela. In order to evaluate the performance, we use the
Amazon EC2 c4.8xlarge VM, which has 36 cores. We
use the results in Figure 7 to find the amount of noise re-
quired for each deployment scenario and incorporate it into
the input message batch for each server.

We measured how the message batch size affects Sta-
dium’s latency (length of the round). The more servers
that are available to the system, the more distributed the
user message load becomes. We compare our results, illus-
trated in Figure 9, to Vuvuzela running with a chain of 3
servers (plotted as dashed line in the figure). We find that
that Stadium can scale to support hundreds of millions of
users with reasonable latency of 80 seconds. In contrast,
Vuvuzela does not gain from additional servers. It has a
very steep incline in latency compared to Stadium’s de-
ployments and with a similar latency (80s), Vuvuzela can
only support about 3.5 million users.

Deployment cost. To support 2 million users with 55
seconds latency, each of Vuvuzela’s servers sends at rate
1.3Gbps per server (see results in [41]). In contrast, to
support the same number of users and latency, under de-
ployment of 100 servers, each Stadium server sends only
at a rate of 20Mbps (about 1.5% of a Vuvuzela server).
We argue that this reduction in bandwidth utilization is
significant in order to support large scale deployments of
Stadium.

Communication is the dominant factor in the cost of
maintaining a server. Consider, for example, the price of
running a 36-core server on Amazon EC2. The cost of us-
ing such server for processing is $1.5/hour. In contrast, the
cost of transmitting at 1.3Gbps is approximately $14/hour,
almost 10× the cost of processing (Using Amazon’s prices
as of September 2016). To further illustrate the feasibility
of deploying Stadium, consider the top 300 relays in the
Tor network, each offers more than 140 Mbps of band-
width (see [40]). Using only these servers, Stadium could

support over 10 million users with reasonable 30 seconds
latency (see Figure 9). In contrast, no Tor relay provides
more than 1Gbps of bandwidth (as Vuvuzela requires).

11 Related Work

Anonymous communication systems. This paper com-
pares with Vuvuzela [41], which has similar privacy goals
based on differential privacy. In contrast to Vuvuzela, Sta-
dium allows for incremental and scalable deployments for
efficiently handling millions users and cuts the cost of
operating each server (see comparison in Section 10).

Parallel mixnets [27, 17] were suggested as a scalable
mixnet [9] design. Stadium adopts ideas from [27], where
messages can take multiple paths through the mixnet. How-
ever, the design of parallel mixing is such that when some
relationships between inputs and outputs are known to the
attacker, e.g., when attacker-controlled clients send mes-
sages through the system, the attacker gains information
about other communicating pairs of users. The problem
grows worse when the attacker controls some of the mix
servers and can significantly degrade privacy by combining
information gained over time [6]. Stadium uses random
paths and differential privacy to provably bound informa-
tion leakage, and its privacy guarantees are independent of
other users traffic.

Systems for providing provable privacy include Ri-
poste [12] and Dissent [13, 42], which rely on broadcasting
all messages which introduces significant traffic volumes
and communication costs, or utilize computationally in-
tensive private information retrieval protocols. As a result,
these systems have only scaled to support thousands of
users or a few hundred messages per second.

In contrast, Tor [16], the most popular anonymity system
today, and cMix [10], a recently suggested efficient mixnet,
scale to handle tens of millions of users, but do not protect
against powerful adversaries. In particular, user privacy
depends on the number of other users in the system and
their traffic patterns, and Tor was shown vulnerable to both
passive [32] and active [26] attacks. AnonPoP [25] has a
scalable mixnet design similar to Vuvuzela extending to
allow for multiple conversations and offline clients, but
does not provide provable privacy guarantees.

Verifiable shuffles. Stadium uses verifiable shuffles to
ensure that no server modified the messages after they
were sent to the system. Verifiable shuffles were originally
proposed to allow globally verifiable e-voting [1, 3, 8, 14,
23, 34], another privacy related scenario. In this paper we
use the verifiable shuffling protocol in the same privacy-
related context, but for a different goal, that is to allow a
scalable construction of a private messaging system. Other
verifiable mixnet approaches such as randomized partial
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checking [29] allow a small probability that malicious
servers will get away with changing a message. Even
though this probability is small, over many servers and
many rounds, it becomes too much for our privacy budget.

Differentially-private systems. Several works present
privacy-preserving services using differential privacy.
PINQ [33] allows to perform set operations for processing
a database of private records. Airavat [35] allows Map-
Reduce processing of sensitive data. These systems assume
that servers are trusted, and keep a ‘privacy budget’, in or-
der to reason about the information leaked to the external
user through past queries. In contrast, Stadium limits in-
formation leaked to attacker, who possibly controls some
of the servers in the system.

Stadium generates sufficient noise such that communi-
cation is private regardless of the number of users intro-
ducing baseline communication and processing overhead.
As suggested in [2, 5, 24], Stadium can benefit from using
legitimate users’ traffic as noise.

Another related line of work is user privacy for untrusted
aggregators wishing to learn summary statistics over user
populations [21, 11]. Similar to our scenario, noise is
generated independently (by users vs. by honest servers)
and privacy is achieved in aggregate.

12 Conclusion
Stadium is the first private messaging system to protect
both data and metadata while scaling effectively across
multiple servers. The system scales to support over an
order of magnitude more users than prior systems through a
novel verifiable parallel mixnet design. Stadium distributes
the message load across servers and can be incrementally
deployed by organizations with modest resources, thus
providing a tangible path to Internet-wide deployment.
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A Arranging in Mix Chains

In this section we describe how Stadium servers arrange
in l-server long mixing chains after they coordinated a
random seed s (see details in Section 4.1). In order to
ensure that no server needs to handle the message batch
from two different chains simultaneously, we select the
order such that each server appears exactly once in each
position of the chains. To do this, we use a pseudo random
permutation (PRP) keyed using the random seed s, that
maps the range 1..m, where m denotes the number of
servers (e.g., constructed using [39]). We invoke it l ·m
and arrange the outputs in an l ×m matrix M , such that
Mi,j = PRPs||i(j):

PRPs||1(1) PRPs||1(2) . . . PRPs||1(m)
PRPs||2(1) PRPs||2(2) . . . PRPs||2(m)

. . . . . . . . . . . . . . . . . . . .
PRPs||l(1) PRPs||l(2) . . . PRPs||l(m)


We use each column to identify the servers in a mix

chain and their order (there are m mix chains). Since
each row is generated by the same keyed permutation, no
server can appear twice at the same position in the chain,
and therefore no server will need to process two message
batches simultaneously.

B Diff-Privacy with Poisson Noise
In this section we prove Theorem 1. To simplify pre-
sentation we use the Pois(λ; k) to denote Pr[x = k|x ∼
Pois(λ)]. We show that Pois(λ) noise provides differential
privacy with ε = ln(1 + c

√
λ+1
λ ) and δ = Pois(λ;λ −

c
√
λ)+Pois(λ;λ+ c

√
λ). Where c is a positive value that

allows to trade-off higher ε for lower δ. Our proof com-
bines two lemmas. First, we show that the ratio between
Pois(λ; k) and Pois(λ; k+1) for values of k that are close
to λ is bounded by eε. Second, we show that for values of
k that are more distant from λ, the difference between the
two probabilities is no more than δ.

Lemma 5. If |λ − k| ≤ c
√
λ, then Pois(λ; k) ≤

eεPois(λ; k + 1).

Proof. Using the Poisson probability mass function, it
follows that we require: λ

ke−λ

k! ≤ eε λ
k+1e−λ

(k+1)! . Hence:

1 ≤ eε λ

k + 1
→ ε ≥ ln(

k + 1

λ
) (1)

Since k ≤ λ+ c
√
λ and ln is monotonously increasing,

we find that it is sufficient to select: ε ≥ ln(λ+c
√
λ+1

λ ) =

ln(1 + c
√
λ+1
λ ).

For the second part of the proof, which is composed
of Lemmas 6 and 7, we will use the following property:
Pois(λ; k) is increasing for k < λ and decreasing for k >
λ.

Pois(λ; k + 1)− Pois(λ; k) =
λk+1e−λ

(k + 1)!
− λke−λ

k!
=

λke−λ

k!
(

λ

k + 1
− 1) = Pois(λ; k)(

λ

k + 1
− 1)

(2)

For any k,Pois(λ; k) ≥ 0. Therefore the above dif-
ference is non negative (i.e., function is not decreasing)
when λ

k+1 − 1 ≥ 0→ k ≤ λ− 1, and non-positive when
k ≥ λ− 1.

We next show that for any subset S ⊆ {k||λ − k| >
c
√
λ} of the range of Pois(λ) it holds that |Pr[k ∈ S] −

Pr[k + 1 ∈ S]| < δ. We divide the proof into two lemmas.

Lemma 6. Let S1 = {k|k < λ − c
√
λ}. We show that

|Pr[k ∈ S1]− Pr[k + 1 ∈ S1]| < δ1.

Proof. In this range it holds that Pois(λ; k + 1) >
Pois(λ; k) (the Poisson pmf is increasing). Thus, |Pr[k ∈
S1]− Pr[k + 1 ∈ S1]| = Pr[k + 1 ∈ S1]− Pr[k ∈ S1] ≤∑

0≤i<λ−c
√
λ Pois(λ; i+1)−Pois(λ; i). The reason is that

for every k ∈ S1 the difference Pr[k + 1 ∈ S∞]− Pr[k ∈
S∞] is positive. So the term is upper bounded by summing
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for all k ∈ S1. This is a telescopic series and its sum is
Pois(λ;λ−c

√
λ+1)−Pois(λ; 0) < Pois(λ;λ−c

√
λ) =

δ1.

Lemma 7. Let S2 = {k|k > λ − c
√
λ}. We show that

|Pr[k ∈ S2]− Pr[k + 1 ∈ S2]| < δ2.

Proof. Pois(λ; k + 1) < Pois(λ; k) (the Poisson pmf
is decreasing), thus we are interested in bounding∑
i>λ+c

√
λ Pois(λ; i)−Pois(λ; i+1). This is a telescopic

series, and its sum less than Pois(λ;λ+ c
√
λ) = δ2.

Combining Lemmas 6 and 7 we find that since
S∞

⋃
S∈ = S, we get: δ = δ1 + δ2 = Pois(λ;λ −

c
√
λ) + Pois(λ;λ+ c

√
λ)

C Probabilistic Differential Privacy
In this section we prove Theorem 2.

Proof. For any subset S of the image of mechanism M, the
following holds:

Pr[M(x) ∈ S] =∑
i

pi · Pr[M(x) ∈ S|case = i] ≤∑
i

pi(e
εiPr[M(x) 6∈ S] + δi) =

eln
∑
i pi·e

εiPr[M(x) 6∈ S] +
∑
i

piδi

Therefore, ε = ln
∑
i pi · eεi and δ =

∑
i piδi

D Affected Observable Variables
We prove Theorem 3, which bounds by the number of
observable variables that are affected by a user’s communi-
cation patterns at two single-access and two double-access
variables.

Proof. Consider a user Alice. In each round Alice may
communicate with one of her peers, say Bob, or may not
communicate at all. Her cover stories afforded by Stadium
are, that instead of Alice’s real actions, she is either com-
municating with some random (non-compromised) idle
user or not communicating at all (in case that Alice was
actually talking with Bob). We analyze how each of the
possible pairs of real/cover actions affect Stadium’s ob-
servable variables and show that Theorem 3 holds in each
case.

Case 1: Alice communicates with Bob. If Alice claims
to be idle, then she claims to have used a different, random,

dead-drop ID as destination for her message (instead of the
one coordinated with Bob). By this cover story the double-
access variable matching her and Bob’s output chains is
decreased by 1, and the single access variables of both
output chains increase by 1. (i.e., 1 double- and 2 single-
access variables change.)

If Alice instead claims to communicate with another
user, X, then the double-access variable matching Alice
and Bob’s output chains is decrease by 1, the double-access
variable matching Alice and user X’s output chains is in-
creased by 1. Bob’s output chain single-access variable is
increased by 1 and X’s output chain single access variable
is decreased by 1. (i.e., 2 double- and 2 single- access
variables change.)

Case 2: Alice is idle. If Alice claims to be communicating
with user X, then the single-access variables for Alice and
X’s output chains are decreased by 1, and the double-access
variable matching their output chains is increased by 1.
(i.e., 1 double- and 2 single- access variables change.)
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