
Snorkel: Fast Training Set Generation
for Information Extraction

Alexander J. Ratner, Stephen H. Bach, Henry R. Ehrenberg, Chris Ré
Computer Science Department, Stanford University

{ajratner, bach, henryre, chrismre}@cs.stanford.edu

ABSTRACT
State-of-the art machine learning methods such as deep learn-
ing rely on large sets of hand-labeled training data. Collect-
ing training data is prohibitively slow and expensive, espe-
cially when technical domain expertise is required; even the
largest technology companies struggle with this challenge1.
We address this critical bottleneck with Snorkel2, a new
system for quickly creating, managing, and modeling train-
ing sets. Snorkel enables users to generate large volumes of
training data by writing labeling functions, which are simple
functions that express heuristics and other weak supervision
strategies. These user-authored labeling functions may have
low accuracies and may overlap and conflict, but Snorkel
automatically learns their accuracies and synthesizes their
output labels. Experiments and theory [3, 4] show that sur-
prisingly, by modeling the labeling process in this way, we
can train high-accuracy machine learning models even using
potentially lower-accuracy inputs. Snorkel is currently used
in production at top technology and consulting companies,
and used by researchers to extract information from elec-
tronic health records, after-action combat reports, and the
scientific literature. In this demonstration, we focus on the
challenging task of information extraction, a common appli-
cation of Snorkel in practice. Using the task of extracting
corporate employment relationships from news articles, we
will demonstrate and build intuition for a radically different
way of developing machine learning systems which allows us
to effectively bypass the bottleneck of hand-labeling training
data.

1. INTRODUCTION
Traditionally, high-performance machine learning meth-

ods require custom features and hand-labeled training data
for a given domain and task. In the last several years, deep

1https://www.wired.com/2016/11/
googles-search-engine-can-now-answer-questions-human-help
2http://snorkel.stanford.edu

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3056442

learning models have removed much of the burden of manu-
ally engineering features, at the cost of requiring even larger
labeled training data sets. For example, to apply a deep
learning model to the problem of extracting mentions of
company-employee relationships in news articles, we would
need to label potentially tens of thousands of example men-
tions by hand. This labeling process is even slower and more
expensive when special domain expertise is required. Users
across the spectrum face this challenge. For example, indus-
try and scientific consortia have spent tens of person-years
setting annotation guidelines and labeling training data [2],
and from our work with major consulting companies, we
find that a range of companies of different sizes all strug-
gle to collect and manage training data. Furthermore, once
training datasets are created, real-world applications often
evolve, necessitating expensive re-labeling of data.

In Snorkel, we seek to radically accelerate the process of
training and deploying new machine learning systems by
avoiding both traditional feature engineering and manual
training data labeling. Instead, developers only write la-
beling functions which programmatically, but noisily, label
large volumes of training data. These labeling functions can
express heuristics, rules, and other popular strategies for
weak supervision such as distant supervision, crowdsourc-
ing, and ensembling of less accurate classifiers. This pro-
vides a unifying framework for approaches which allow us to
generate training data in a variety of settings and with vary-
ing levels of supervision resources available. The resulting
labeling functions will have unknown accuracies, and may
overlap and conflict with each other. Snorkel automatically
learns each labeling function’s reliability, synthesizes their
output labels, and uses the final denoised labels to train an
end machine learning model.

Snorkel’s workflow is fundamentally different from tradi-
tional machine learning approaches, and is based on the
newly proposed data programming paradigm [4]. Rather
than viewing training data as a perfectly correct input pro-
vided a priori, we view the labeling of training data as a
stochastic process that we can model. Surprisingly, by learn-
ing this model, we can use potentially low-accuracy labeling
functions to train high-accuracy end models. Data program-
ming is already used to train models over text, images, and
semi-structured data in a variety of application domains.
For example, systems built with data programming are used
to mine electronic health records in order to analyze criti-
cal factors in post-surgical outcomes, assist law enforcement
efforts to fight human trafficking by extracting information
from the dark web, and analyze after-action combat reports

x1

x3

x5

x2

x4

Unlabeled
objects

P(λi|yj)
0.85

0.80

0.65

λ1

λ2

λ3

LFs (𝜆)

P(yi| 𝜆)
0.95

0.80

0.15

0.85

0.65

Figure 1: In data programming, we learn the accu-
racies of the labeling functions (LFs) by observing
their agreements and disagreements with each other;
we then use the predictions of this generative model
as noise-aware training labels.

to study military conflicts.
In this demonstration, we will highlight the use of Snorkel

to power the rapid development of new structured informa-
tion extraction applications, an increasingly critical part of
many analysis pipelines. Specifically, we will consider the
example of extracting corporate employee relationships–e.g.
Employs(CompanyA, PersonB)–from news articles, and walk
attendees through the process of writing labeling functions
and modeling their accuracies in Snorkel. We will also be
able to discuss a wide range of experiences with this fun-
damentally new approach to building machine learning sys-
tems, based on Snorkel deployments and hackathons at vari-
ous technology and consulting companies, government agen-
cies, and research labs.

2. DATA PROGRAMMING
Data programming [4] is a new machine learning paradigm

for quickly and cheaply generating training sets for machine
learning models. In data programming, instead of hand-
labeling training data, the user writes labeling functions,
which are just functions that label some subset of the avail-
able data, may have arbitrary unknown accuracies, and may
overlap and conflict with each other.

The process of data programming is divided into two stages:
(1) modeling the outputs of the labeling functions with a
generative model, and (2) training an end model with the
estimated labels.

Modeling the Labeling Functions. For concreteness, we
consider the binary classification setting, as is relevant to
our information extraction task. Our input is thus a set
of candidate extractions x ∈ X , with unknown true labels
y ∈ {−1, 1}, and a set of m labeling functions λi : X 7→
{−1, 0, 1} provided by the user. In data programming, these
labeling functions are treated as implicitly specifying a gen-
erative model of the training set labeling process, µα(λ, y),
where α is the vector of the accuracies of the labeling func-
tions that we estimate using maximum likelihood estimation
(see Fig. 1).

Training the End Model . Given the estimated genera-
tive model, we produce a set of noise-aware training la-
bels, which are just the predictions of the generative model
Pµα(y|λ). We then train a noise aware version of our end
classification model by minimizing the expected loss with
respect to these noisy training labels, i.e. we solve

θ̂ = argminθ
∑
x

Eµα [l(x, y; θ) | λ]

where l is a loss function such as the logistic loss or a more
complex loss, such as that of an LSTM or convolutional
neural network.

One of the most exciting results around data program-
ming is that given enough labeling functions of high enough
average quality, the end performance of the model we are
ultimately training scales with respect to the amount of un-
labeled data used at the same asymptotic rate as in the fully-
supervised case. Further details can be found in [4].

3. SYSTEM OVERVIEW
We describe the information extraction workflow in Snorkel,

as shown in Fig. 2, using the task of extracting company em-
ployee relationship mentions from news articles as a running
example.

3.1 Preprocessing
Snorkel provides an automated data preprocessing frame-

work for the user, built around a flexible data model which
automatically represents input data as a hierarchy of un-
structured contexts. For example, news articles would be
segmented into headline and body sections, and the body
segmented into paragraphs and sentences.

As in most standard information extraction approaches,
we then extract candidate relations, which reduces our prob-
lem to binary classification over candidates. In our company-
employee relation problem, for example, we might consider
all potential pairs of a company and a person mentioned in
the same sentence as candidate company-employee relation
mentions; our task is then to train a model which classifies
each one as a true mention of this type or not. In Snorkel, we
represent candidates as tuples of pointers to elements of the
context hierarchy, a clean representation which enables easy
user interaction when writing labeling functions. For ex-
ample, a candidate relation Employs(CompanyA, PersonB)

would be represented as a pair of pointers to the mentions
of CompanyA and PersonB.

3.2 Writing Labeling Functions
The primary user interaction with Snorkel is the iterative

development of labeling functions. In Snorkel, labeling func-
tions are simply Python functions which take a candidate
as input, and output a True, False or None label. Label-
ing functions are able to express and subsume a wide range
of approaches commonly used in practice to generate noisy
training data, including:

• Heuristic pattern matching: Labeling functions in
Snorkel can express any pattern matching rule (e.g.
regular expressions), or more complex heuristics, even
utilizing external libraries. For example we might look
for the phrase “works for” between two noun phrases
in a sentence, or reference an external dictionary.

Daily News
ABC Corp. hired
Jim Roberts from
XYZ, Inc., to
replace Bob
Johnson…

id Company Employee

1 ABC	Corp. Jim Roberts

2 ABC	Corp. Bob	Johnson

3 XYZ,	Inc. Jim	Roberts

4 XYZ,	Inc. Bob Johnson

def lf1(x):
cid = (x.id1, x.id2)
return 1 if cid in KB

def lf2(x):
m = search(’hire.*’, w)
return 1 if m else 0

def lf3(x):
m = search(‘replace.*’, w)
return -1 if m else 0

L1,1

L1,2

L1,3

y1

(i) (ii)

(iii) (iv)

(v)

Jim RobertsABC Corp.

hired

XYZ, Inc. Bob
Johnson

Daily
News

Doc_001

Sent_01 Title_01

Figure 2: The information extraction workflow in Snorkel: (i) An unstructured input document is parsed into
a context hierarchy, including a grammatical dependency parse of the sentences; (ii) candidates are extracted;
(iii) the user inspects sample candidates, and writes labeling functions; these labeling functions may potentially
integrate external sources such as existing knowledge bases, crowd labels or weak classifiers; (iv) the accuracies
of these labeling functions is automatically modeled, which may also provide useful feedback to the user; (v)
finally, an end extraction model is trained. In the demonstration, our primary focus will be on the iterative
labeling function development process and environment in steps (iii) and (iv).

Figure 3: Labeling functions which express pattern-
matching, distant supervision, and weak classifier
heuristics, respectively, in Snorkel’s Jupyter note-
book interface.

• Distant supervision: Labeling functions can easily
allow users to leverage external knowledge bases and
other data resources to label data points. For exam-
ple, we can label as true any mention of a company
and person that co-occur in a sentence, and that are
known to have a relationship based on some external
knowledge base (such as Crunchbase3).

• Ensembling of weak classifiers: In some scenarios,
we may have one or more pretrained weak classifiers,
which may be biased or low-quality. These can be
incorporated as labeling functions in Snorkel.

Figure 3 shows examples of these approaches. In our ex-
perience working on information extraction tasks, we have
found that developers can have access to varying levels of
these supervision resources, which can all be handled by
Snorkel; for example:

• Low resource: A user may have no external knowl-
edgebases or other such resources, and can instead rely
on Snorkel’s notebook-based interface and Viewer util-
ity to rapidly generate pattern-based labeling func-
tions, which our end extraction model will learn to
generalize.

3https://www.crunchbase.com

• Medium resource: A user might have access to var-
ious resources such as external knowledge bases, weak
classifiers, or unreliable crowd labels that can be inte-
grated as labeling functions.

• High resource: A user might additionally have ac-
cess to labeled training data, which can also be easily
integrated into the Snorkel framework.

In the demonstration, we will give examples to illustrate
labeling function development in a range of these regimes.

Snorkel makes it easy for users to quickly iterate through
the typical label function development cycle. The construc-
tion of an initial set of labeling functions is accelerated by
the object-relational mapping (ORM) layer, implemented in
SQLAlchemy 4. Users can write labeling functions that tra-
verse the hierarchy of input data (see Fig. 2) to access infor-
mation without writing any SQL. Data exploration over the
data model is simplified by the Snorkel’s Jupyter notebook
front-end.

Snorkel also computes a range of performance evaluation
metrics for labeling function sets. These metrics measure
key labeling function attributes such as empirical accuracy
on any available labeled data, degrees of overlaps and con-
flicts, and distributions of labels.

Users can also use the output of the generative model
over the labeling functions (as described in Section 3.3) to
improve the labeling function set. When combined with
Snorkel’s utilities for viewing example candidates, this em-
powers users to quickly identify error modes (see Fig. 4). For
example, this could enable a user to notice that customers or
clients are being incorrectly labeled as employees; they could
then write a labeling function to correct this. Using all of
these feedback signals, users can rapidly refine and debug
their existing labeling functions, add new ones, or remove
unhelpful ones [3].

3.3 Automated Modeling and Training
In the modeling phase, Snorkel automatically learns a gen-

erative model of the labeling process (see Sec. 2), recover-
ing the accuracy parameters of the user-authored labeling

4http://www.sqlalchemy.org

Figure 4: The Viewer utility in Snorkel, show-
ing candidate company-employee relation mentions,
comprised of candidate person and company men-
tion pairs.

functions based on their overlapping output. In Snorkel, we
can also automatically learn dependencies that may exist be-
tween the labeling functions, further improving the accuracy
of our model [1].

Snorkel then uses the predictions of this generative model
as noise-aware labels to train any generic machine learn-
ing model as an end extractor. By default, Snorkel has
plugins for TensorFlow5, which are adapted to take advan-
tage of Snorkel’s flexible context hierarchy. For example,
a document having sections, subsections, and paragraphs
with headers would be parsed into a hierarchy of these con-
stituent parts, and this would trigger a specific way that
this data was then passed on to the end extraction model.
The context hierarchy helps to automate this representation
step and speeds up the featurization and training processes
for an end machine learning model, which could be one of
Snorkel’s default models or one implemented by the user.

4. DEMONSTRATION OVERVIEW
We will interactively walk attendees through the process

of building an information extraction application with Snorkel,
focusing on the labeling function development cycle (see
Fig. 2). The demonstration will center on the representa-
tive task of extracting mentions of people being employed by
companies from real world news articles. The demonstration
will be completely interactive, allowing users to experiment
with making changes to any stage of the pipeline, in par-
ticular adding, modifying, and removing labeling functions,
and then rerunning modeling and training to see the results.

Using our past experience hosting Snorkel-based hackathons,
we designed the demonstration to showcase critical user in-
teraction points. The preprocessing steps will be completed
ahead of time (but can be re-run for interested attendees),
and we will walk through the following stages:

1. Data exploration: Starting with a random sample
of candidate extractions of type Employs(CompanyA,

PersonB), we will use the Snorkel Viewer utility to (a)
get a sense of the difficulty of the problem (for atten-
dees new to information extraction) and (b) develop
ideas for pattern- and heuristic-based labeling func-
tions.

5http://hazyresearch.github.io/snorkel/blog/dp with tf blog
post.html

2. Writing labeling functions: Attendees will write
a few simple labeling functions, using helper meth-
ods to accelerate this process. We will also have sev-
eral prewritten examples for inspiration and for jump-
starting application performance. Most labeling func-
tions are simple Python functions in a Jupyter note-
book, so it will be easy for attendees to modify and
write their own labeling functions.

3. Advanced labeling function examples: We will
show several examples of labeling functions which lever-
age popular weak supervision strategies, such as dis-
tant supervision, crowdsourced labels, and weak clas-
sifiers.

4. Modeling and debugging: We will demonstrate the
modeling phase, and how to (a) view the resulting
model over the labeling functions, and (b) use this to
help debug and develop new labeling functions. Since
the entire demonstration will be a sequence of turnkey
notebooks, it will be very easy for users to test the
effects of their work in real-time.

Our demonstration will give attendees a better“engineer’s
intuition” for data programming by allowing them to exper-
iment with modifications to the workflow, such as modeling
dependencies among the labeling functions, learning without
modeling the uncertainty in the training data, and experi-
menting with different end models.

We will also be able to demonstrate the end model train-
ing phase for interested attendees, as well as discuss other
larger-scale Snorkel applications from pilot deployments at
technology and consulting companies, government agencies,
and in research projects involving electronic health records,
post-action combat reports, and the scientific literature.

5. CONCLUSION
Snorkel offers users a new way to develop information

extraction systems, avoiding the most troublesome bottle-
necks of hand-labeling training data and feature engineer-
ing. The demonstration will focus on the most novel aspects
of the data programming experience, and show attendees
how it fundamentally changes the development of machine-
learning-based data systems.

6. REFERENCES
[1] S. H. Bach, B. He, A. Ratner, and C. Ré. Learning the

structure of generative models without labeled data.
arXiv preprint arXiv:1703.00854, 2017.

[2] A. P. Davis et al. A CTD–Pfizer collaboration: Manual
curation of 88,000 scientific articles text mined for
drug–disease and drug–phenotype interactions.
Database, 2013.

[3] H. R. Ehrenberg, J. Shin, A. J. Ratner, J. A. Fries, and
C. Ré. Data programming with DDLite: Putting
humans in a different part of the loop. In HILDA@
SIGMOD, 2016.

[4] A. Ratner, C. De Sa, S. Wu, D. Selsam, and C. Ré.
Data programming: Creating large training sets,
quickly. In Neural Information Processing Systems
(NIPS), 2016.

