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ABSTRACT
GPUs have become the computing platform of choice for deep learn-
ing applications. However, leveraging the ever-increasing compu-
tational power of these GPUs is challenging for many workloads,
resulting in poor resource utilization. In this work, we explore tech-
niques to utilize the GPUmore e�ectively for certain deep learning
tasks; in particular, we propose simultaneously running multiple
models (called amodel batch) on the same GPU (kernel-level paral-
lelism), which also allows data preprocessing to be shared among
the di�erent models. Our results demonstrate performance gains
of up to 9.2⇥ for training and 13.5⇥ for inference compared to the
traditional 1-model-per-GPU con�guration.

1 INTRODUCTION
Over the last �ve years, deep learning has become ubiquitous for a
variety of tasks, including image recognition, machine translation,
and speech recognition. To train these deep learning models more
e�ciently, GPUs have become the default computing platform [4].
Modern GPUs are capable of computational throughputs in excess
of several Tera�ops; leveraging all of this computational capacity
for certain problem domains is a challenge.

For image-related tasks, Convolutional Neural Networks (CNNs)
have proven to be the model of choice. Recent research has shown
that shallow CNNs (<10 layers) can often be e�ective in certain task
regimes (for example, analyzing video streams [7, 16, 17]). These
smallermodels have also been deployedwith great success inmobile
andembedded settings [5, 18]where compute andmemory resources
are limited. However, training and inference of these shallow CNNs
on a GPU proves to be ine�cient; our experiments show that the
processing pipeline is often bottlenecked by input preprocessing,
which includes input decoding, data augmentation, etc. In addition,
training and inference in these regimes often do not contain enough
�oating point operations to su�ciently saturate theGPU’smany exe-
cution units. Sequence-to-sequence models like LSTMs, which have
inherently less parallelism, are also unable to fully utilize GPUs [2].

Training a high-accuracy deep learning model for a speci�c task
is not easy; in practice, deep learning models often require hyper-
parameter and architecture tuning [3, 6, 10] for optimal accuracy.
This usually entails training a number of similar models [12, 19],
and picking the one with highest validation accuracy. In addition,
a number of state-of-the-art models for a variety of tasks [13] are
in fact ensembles. This raises the natural question: can we leverage
the fact that users frequently utilize a number of similar models to
achieve better GPU utilization? To this end, we designed and built
ModelBatch, a system that batches models in addition to inputs, to
improve hardware utilization by performing training or inference
on a number of similar models at once.
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Figure 1: ModelBatch architecture for image classi�cation models.
Input images are preprocessed once across all models and then
o�loaded to the GPU.Model computations are launched in parallel.

There are two main bene�ts to this approach: (a) Better GPU
utilization by giving the GPUmore �oating point operations (in the
form of multiple models), and (b) Amortization of I/O and prepro-
cessing over the many models being trained, shifting the bottleneck
of the end-to-end pipeline back to compute.

Our experiments using ModelBatch demonstrate that batching
models does in fact improve GPU utilization.

2 SYSTEMDESIGN
ModelBatch consists of two main stages: 1) A preprocessing step,
performed on the CPU, that is shared among the di�erent models,
and 2) A computation step (convolutions, matrix multiplications,
pooling, etc.), performed on the GPU and on a per-model basis. To
obtain good performance while batching CNNmodels, ModelBatch
also needs to choose the right convolution algorithm. ModelBatch’s
architecture is shown in Figure 1.

Preprocessing. For image classi�cation models, ModelBatch’s pre-
processing step involves image decoding, as well as other data aug-
mentation. As we show in Figure 3, preprocessing is often a bottle-
neck, especially for relatively shallow architectures, so amortizing
this cost overmultiplemodels is oftenbene�cial.Afterpreprocessing,
input data must be moved from the CPU to the GPU –ModelBatch
hides the latency of this data movement by double bu�ering [14],
ensuring that the transfer of one minibatch to the GPU is performed
concurrently with processing of the previous minibatch.

Computation. ModelBatch’s computation step involves launch-
ing the kernels associated with the di�erent models in parallel. This
is made possible using NVIDIA’s CUDA streams. Kernels on di�er-
ent streams can be launched (and hence executed) in parallel. For
example, twoGEMMkernels operating on disjoint inputs can be exe-
cuted in parallel on di�erent GPU Streaming Multiprocessors when
placed on separate streams.ModelBatch creates a newCUDA stream
for each independent model and schedules kernels for a particular
model exclusively on its respective stream.

Optimizing convolutions. Previous work has demonstrated that
the choice of convolution algorithm signi�cantly impacts perfor-
mance of CNNs [9, 11]. Furthermore, the optimal algorithm for a

https://doi.org/10.1145/nnnnnnn.nnnnnnn


SysML’18, February 2018, Stanford, California USA Narayanan et al.

0
2
4
6
8

10

1 4 16 64 256 1024

Th
ro

ug
hp

ut
 

in
cr

ea
se

Input minibatch size

1000 x 1000 4000 x 4000

Figure 2: Throughput increase of launching 64 kernels in parallel
compared to a single kernel for the forward pass of 1000⇥ 1000 and
4000⇥4000 fully connected layers, for di�erent inputminibatch sizes.
Commonly used inputminibatch sizes usually range from 16 to 256.
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Figure 3: Overhead of preprocessing (computed as the percentage
of time spent in the preprocessing step) while training a stripped-
downAlexNetmodel. The number ofmodels sharing preprocessing
is varied from 1 to 16, and preprocessing is not pipelined with
computation.

single, serial convolution often requires a large amount of scratch
workspace, leading to poor memory locality and out-of-memory
errors when used in parallel. ModelBatch addresses this by scaling
the maximum scratch workspace memory limit with the inverse
of the model batch size, and sharing scratch workspace memory
between layers in a single model.

3 EVALUATION
Our evaluation seeks to answer the following questions:
• How helpful is concurrent kernel execution for GPU utiliza-
tion?
• Howmuch of a bottleneck is input preprocessing in realistic
deep learning workloads?
• How e�ective are ModelBatch’s optimizations when used in
conjunction?

Experiment Setup. All experiments in this section were run on a
machine with 512 GB of memory and 28 CPU cores, and an NVIDIA
P100 GPU. Experiments were run using CUDA 8.0 and CuDNN 6.0.
Where relevant, we used TensorFlow 1.3 [1], compiled from source.

Concurrent Kernels. We illustrate the e�ectiveness of concurrent
kernel launching in Figure 2, which shows the throughput increase
gainedby launching64kernels inparallel compared toasinglekernel,
for the forward pass of two fully connected layers (1000⇥1000 and
4000⇥4000) commonly seen in CNN architectures like AlexNet [8]
and OverFeat [15], for input minibatch sizes varied from 1 to 2048.

We observe three key results: (a) Model batching helps with GPU
utilization for both layer sizes, (b) The bene�ts of model batching are
morepronounced for the smaller layer (5.63⇥ for inputminibatchsize
of 64), and (c) A single model does not reach peak device throughput,
even for very large input minibatch sizes (not pictured in Figure 2).

Input Preprocessing. Figure 3 shows the overhead of preprocess-
ing (computed as the percentage of time spent in the preprocessing
step) while training a 5-layer CNN (inspired by the 8-layer AlexNet
network [8]) executed in TensorFlow on ImageNet data (each image
is 227⇥227 pixels) – this is similar to the specialized models used
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Figure 4: Throughputs (in images per second) for training (left)
and inference (right) of 16 identical 5-layer AlexNet-like models
on ImageNet, using TensorFlow (which processes a single model at
a time), ModelBatch with a model batch size of 1, and ModelBatch
with amodel batch size of 16, for di�erent inputminibatch sizes.

in [7]. Di�erent numbers of models are trained while sharing the
same input pipeline. Model computations are executed serially.

We highlight two key results: (a) The preprocessing overhead
for a single model is high (81.51%), and (b) Sharing preprocessing
among multiple models reduces this overhead drastically (1.94%
when preprocessing is shared across 16 models).

End-to-End Training and Inference. Finally, we show the bene�t of
using ModelBatch in an end-to-end setting. We use the same 5-layer
stripped-down AlexNet model as before, on the ImageNet dataset.

Figure 4a shows the results for training.We runModelBatch with
model batch sizes (MBS) of 1 (no model batching) and 16, and also
run the samemodel on TensorFlow as a baseline. We observe that
ModelBatch with MBS of 1 is competitive with TensorFlow, and that
ModelBatch with MBS of 16 improves throughput by up to 9.2⇥
compared toModelBatchwithMBS of 1, and by up to 7.2⇥ compared
to TensorFlow.

Figure 4b shows the results for inference. As before, ModelBatch
with MBS of 1 is competitive with TensorFlow. In addition, Model-
BatchwithMBS of 16 improves throughput by up to 13.5⇥ compared
to ModelBatch with MBS of 1, and by up to 10.9⇥ compared to Ten-
sorFlow.

4 FUTUREWORK
ModelBatch is intended to be e�ective for a range of model archi-
tecture types, even though this paper only considered image clas-
si�cation CNNs. In particular, we are interested in evaluating how
well model batching works for sequence-to-sequence models like
LSTMs and GRUs, which have inherently less parallelism [2]. We
are also interested in studying howmodel batching can be used for
latency hiding purposes in distributed settings. Finally, we wish to
test ModelBatch on a model / hyperparameter search application,
like Hyperband [10] or Google’s Neural Architecture Search [19],
which currently take hundreds of GPU hours to run to completion.
These applications feature training and inference on similar but not
identical models, which makes scheduling the computation of the
di�erent models more challenging.

5 CONCLUSION
ModelBatch aims at accelerating model search workloads by batch-
ingmodels, allowing for concurrent kernel computation, and shared
data preprocessing. ModelBatch produces speedups of up to 9.2⇥
and 13.5⇥ on training and inference work�ows respectively.
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