
AcceleratingModel SearchwithModel Batching
Extended Abstract

Deepak Narayanan, Keshav Santhanam, Matei Zaharia
Stanford University

ABSTRACT
GPUs have become the computing platform of choice for deep learn-
ing applications. However, leveraging the ever-increasing compu-
tational power of these GPUs is challenging for many workloads,
resulting in poor resource utilization. In this work, we explore tech-
niques to utilize the GPUmore e�ectively for certain deep learning
tasks; in particular, we propose simultaneously running multiple
models (called amodel batch) on the same GPU (kernel-level paral-
lelism), which also allows data preprocessing to be shared among
the di�erent models. Our results demonstrate performance gains
of up to 9.2⇥ for training and 13.5⇥ for inference compared to the
traditional 1-model-per-GPU con�guration.

1 INTRODUCTION
Over the last �ve years, deep learning has become ubiquitous for a
variety of tasks, including image recognition, machine translation,
and speech recognition. To train these deep learning models more
e�ciently, GPUs have become the default computing platform [4].
Modern GPUs are capable of computational throughputs in excess
of several Tera�ops; leveraging all of this computational capacity
for certain problem domains is a challenge.

For image-related tasks, Convolutional Neural Networks (CNNs)
have proven to be the model of choice. Recent research has shown
that shallow CNNs (<10 layers) can often be e�ective in certain task
regimes (for example, analyzing video streams [7, 16, 17]). These
smallermodels have also been deployedwith great success inmobile
andembedded settings [5, 18]where compute andmemory resources
are limited. However, training and inference of these shallow CNNs
on a GPU proves to be ine�cient; our experiments show that the
processing pipeline is often bottlenecked by input preprocessing,
which includes input decoding, data augmentation, etc. In addition,
training and inference in these regimes often do not contain enough
�oating point operations to su�ciently saturate theGPU’smany exe-
cution units. Sequence-to-sequence models like LSTMs, which have
inherently less parallelism, are also unable to fully utilize GPUs [2].

Training a high-accuracy deep learning model for a speci�c task
is not easy; in practice, deep learning models often require hyper-
parameter and architecture tuning [3, 6, 10] for optimal accuracy.
This usually entails training a number of similar models [12, 19],
and picking the one with highest validation accuracy. In addition,
a number of state-of-the-art models for a variety of tasks [13] are
in fact ensembles. This raises the natural question: can we leverage
the fact that users frequently utilize a number of similar models to
achieve better GPU utilization? To this end, we designed and built
ModelBatch, a system that batches models in addition to inputs, to
improve hardware utilization by performing training or inference
on a number of similar models at once.

SysML’18, February 2018, Stanford, California USA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

…
.

Model 1

Model 2

Model n

Input images Input tensors

Preprocessing:
1. Image Decoding
2. Whitening
3. Random crop

Performed once for
all models on the CPU Executed in parallel on

the GPU

Figure 1: ModelBatch architecture for image classi�cation models.
Input images are preprocessed once across all models and then
o�loaded to the GPU.Model computations are launched in parallel.

There are two main bene�ts to this approach: (a) Better GPU
utilization by giving the GPUmore �oating point operations (in the
form of multiple models), and (b) Amortization of I/O and prepro-
cessing over the many models being trained, shifting the bottleneck
of the end-to-end pipeline back to compute.

Our experiments using ModelBatch demonstrate that batching
models does in fact improve GPU utilization.

2 SYSTEMDESIGN
ModelBatch consists of two main stages: 1) A preprocessing step,
performed on the CPU, that is shared among the di�erent models,
and 2) A computation step (convolutions, matrix multiplications,
pooling, etc.), performed on the GPU and on a per-model basis. To
obtain good performance while batching CNNmodels, ModelBatch
also needs to choose the right convolution algorithm. ModelBatch’s
architecture is shown in Figure 1.

Preprocessing. For image classi�cation models, ModelBatch’s pre-
processing step involves image decoding, as well as other data aug-
mentation. As we show in Figure 3, preprocessing is often a bottle-
neck, especially for relatively shallow architectures, so amortizing
this cost overmultiplemodels is oftenbene�cial.Afterpreprocessing,
input data must be moved from the CPU to the GPU –ModelBatch
hides the latency of this data movement by double bu�ering [14],
ensuring that the transfer of one minibatch to the GPU is performed
concurrently with processing of the previous minibatch.

Computation. ModelBatch’s computation step involves launch-
ing the kernels associated with the di�erent models in parallel. This
is made possible using NVIDIA’s CUDA streams. Kernels on di�er-
ent streams can be launched (and hence executed) in parallel. For
example, twoGEMMkernels operating on disjoint inputs can be exe-
cuted in parallel on di�erent GPU Streaming Multiprocessors when
placed on separate streams.ModelBatch creates a newCUDA stream
for each independent model and schedules kernels for a particular
model exclusively on its respective stream.

Optimizing convolutions. Previous work has demonstrated that
the choice of convolution algorithm signi�cantly impacts perfor-
mance of CNNs [9, 11]. Furthermore, the optimal algorithm for a

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SysML’18, February 2018, Stanford, California USA Narayanan et al.

0
2
4
6
8

10

1 4 16 64 256 1024

Th
ro

ug
hp

ut

in
cr

ea
se

Input minibatch size

1000 x 1000 4000 x 4000

Figure 2: Throughput increase of launching 64 kernels in parallel
compared to a single kernel for the forward pass of 1000⇥ 1000 and
4000⇥4000 fully connected layers, for di�erent inputminibatch sizes.
Commonly used inputminibatch sizes usually range from 16 to 256.

0

50

100

1 2 4 8 16Pr
ep

ro
ce

ss
in

g
ov

er
he

ad
 (%

)

Number of models sharing preprocessing

Figure 3: Overhead of preprocessing (computed as the percentage
of time spent in the preprocessing step) while training a stripped-
downAlexNetmodel. The number ofmodels sharing preprocessing
is varied from 1 to 16, and preprocessing is not pipelined with
computation.

single, serial convolution often requires a large amount of scratch
workspace, leading to poor memory locality and out-of-memory
errors when used in parallel. ModelBatch addresses this by scaling
the maximum scratch workspace memory limit with the inverse
of the model batch size, and sharing scratch workspace memory
between layers in a single model.

3 EVALUATION
Our evaluation seeks to answer the following questions:
• How helpful is concurrent kernel execution for GPU utiliza-
tion?
• Howmuch of a bottleneck is input preprocessing in realistic
deep learning workloads?
• How e�ective are ModelBatch’s optimizations when used in
conjunction?

Experiment Setup. All experiments in this section were run on a
machine with 512 GB of memory and 28 CPU cores, and an NVIDIA
P100 GPU. Experiments were run using CUDA 8.0 and CuDNN 6.0.
Where relevant, we used TensorFlow 1.3 [1], compiled from source.

Concurrent Kernels. We illustrate the e�ectiveness of concurrent
kernel launching in Figure 2, which shows the throughput increase
gainedby launching64kernels inparallel compared toasinglekernel,
for the forward pass of two fully connected layers (1000⇥1000 and
4000⇥4000) commonly seen in CNN architectures like AlexNet [8]
and OverFeat [15], for input minibatch sizes varied from 1 to 2048.

We observe three key results: (a) Model batching helps with GPU
utilization for both layer sizes, (b) The bene�ts of model batching are
morepronounced for the smaller layer (5.63⇥ for inputminibatchsize
of 64), and (c) A single model does not reach peak device throughput,
even for very large input minibatch sizes (not pictured in Figure 2).

Input Preprocessing. Figure 3 shows the overhead of preprocess-
ing (computed as the percentage of time spent in the preprocessing
step) while training a 5-layer CNN (inspired by the 8-layer AlexNet
network [8]) executed in TensorFlow on ImageNet data (each image
is 227⇥227 pixels) – this is similar to the specialized models used

0
2000
4000
6000
8000

1 4 16 32 64

Th
ro

ug
hp

ut

(im
ag

es
 /

se
co

nd
)

Input minibatch size

(a) Training.

0
2000
4000
6000
8000

1 4 16 32 64
Input minibatch size

(b) Inference.
Figure 4: Throughputs (in images per second) for training (left)
and inference (right) of 16 identical 5-layer AlexNet-like models
on ImageNet, using TensorFlow (which processes a single model at
a time), ModelBatch with a model batch size of 1, and ModelBatch
with amodel batch size of 16, for di�erent inputminibatch sizes.

in [7]. Di�erent numbers of models are trained while sharing the
same input pipeline. Model computations are executed serially.

We highlight two key results: (a) The preprocessing overhead
for a single model is high (81.51%), and (b) Sharing preprocessing
among multiple models reduces this overhead drastically (1.94%
when preprocessing is shared across 16 models).

End-to-End Training and Inference. Finally, we show the bene�t of
using ModelBatch in an end-to-end setting. We use the same 5-layer
stripped-down AlexNet model as before, on the ImageNet dataset.

Figure 4a shows the results for training.We runModelBatch with
model batch sizes (MBS) of 1 (no model batching) and 16, and also
run the samemodel on TensorFlow as a baseline. We observe that
ModelBatch with MBS of 1 is competitive with TensorFlow, and that
ModelBatch with MBS of 16 improves throughput by up to 9.2⇥
compared toModelBatchwithMBS of 1, and by up to 7.2⇥ compared
to TensorFlow.

Figure 4b shows the results for inference. As before, ModelBatch
with MBS of 1 is competitive with TensorFlow. In addition, Model-
BatchwithMBS of 16 improves throughput by up to 13.5⇥ compared
to ModelBatch with MBS of 1, and by up to 10.9⇥ compared to Ten-
sorFlow.

4 FUTUREWORK
ModelBatch is intended to be e�ective for a range of model archi-
tecture types, even though this paper only considered image clas-
si�cation CNNs. In particular, we are interested in evaluating how
well model batching works for sequence-to-sequence models like
LSTMs and GRUs, which have inherently less parallelism [2]. We
are also interested in studying howmodel batching can be used for
latency hiding purposes in distributed settings. Finally, we wish to
test ModelBatch on a model / hyperparameter search application,
like Hyperband [10] or Google’s Neural Architecture Search [19],
which currently take hundreds of GPU hours to run to completion.
These applications feature training and inference on similar but not
identical models, which makes scheduling the computation of the
di�erent models more challenging.

5 CONCLUSION
ModelBatch aims at accelerating model search workloads by batch-
ingmodels, allowing for concurrent kernel computation, and shared
data preprocessing. ModelBatch produces speedups of up to 9.2⇥
and 13.5⇥ on training and inference work�ows respectively.

AcceleratingModel Search withModel Batching SysML’18, February 2018, Stanford, California USA

ACKNOWLEDGMENTS
We thank Cody Coleman, Edward Gan, Daniel Kang, Pratiksha
Thaker, and themanymembers of the Stanford InfoLab for their valu-
able feedback on thiswork. This researchwas supported in part by af-
�liatemembers andother supporters of the StanfordDAWNproject –
Google, Intel,Microsoft, Teradata, andVMware–aswell as industrial
gifts and support from Toyota Research Institute, Juniper Networks,
Keysight Technologies, Hitachi, Facebook, Northrop Grumman, Ne-
tApp, the NSF under grants DGE-1656518 and CNS-1651570, and
DARPA under grant No. FA8750-17-2-0095 (D3M).

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je�rey

Dean,MatthieuDevin, SanjayGhemawat,Geo�rey Irving,Michael Isard, et al. 2016.
TensorFlow:ASystemforLarge-ScaleMachineLearning. InOSDI,Vol. 16. 265–283.

[2] Jeremy Appleyard, Tomas Kocisky, and Phil Blunsom. 2016. Optimizing Perfor-
mance of Recurrent Neural Networks on GPUs. arXiv preprint arXiv:1604.01946
(2016).

[3] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-
parameter Optimization. J. Mach. Learn. Res. 13 (Feb. 2012), 281–305.
http://dl.acm.org/citation.cfm?id=2188385.2188395

[4] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang,
Luigi Nardi, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. 2017.
DAWNBench: An End-to-End Deep Learning Benchmark and Competition. In
NIPS ML SystemsWorkshop.

[5] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, TobiasWeyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
E�cient Convolutional Neural Networks for Mobile Vision Applications. CoRR
abs/1704.04861 (2017). arXiv:1704.04861 http://arxiv.org/abs/1704.04861

[6] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Je�
Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan,
Chrisantha Fernando, and Koray Kavukcuoglu. 2017. Population Based Training
of Neural Networks. arXiv preprint arXiv:1711.09846v2 (2017).

[7] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.
NoScope: optimizing neural network queries over video at scale. Proceedings of
the VLDB Endowment 10, 11 (2017), 1586–1597.

[8] Alex Krizhevsky, Ilya Sutskever, andGeo�rey EHinton. 2012. ImageNet Classi�ca-
tionwithDeepConvolutionalNeuralNetworks. InAdvances inNeural Information
Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.Weinberger
(Eds.). Curran Associates, Inc., 1097–1105. http://papers.nips.cc/paper/
4824-imagenet-classi�cation-with-deep-convolutional-neural-networks.pdf

[9] Andrew Lavin and Scott Gray. 2016. Fast algorithms for convolutional neural
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 4013–4021.

[10] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2016. Hyperband: Bandit-based con�guration evaluation for
hyperparameter optimization. (2016).

[11] Karas Pavel and Svoboda David. 2013. Algorithms for e�cient computation of
convolution. InDesign and Architectures for Digital Signal Processing. InTech.

[12] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon
Suematsu, Quoc Le, and Alex Kurakin. 2017. Large-scale evolution of image
classi�ers. arXiv preprint arXiv:1703.01041 (2017).

[13] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International Journal
of Computer Vision 115, 3 (2015), 211–252.

[14] José Carlos Sancho and Darren J Kerbyson. 2008. Analysis of double bu�ering
on two di�erent multicore architectures: Quad-core Opteron and the Cell-BE. In
Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium
on. IEEE, 1–12.

[15] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and
Yann LeCun. 2013. Overfeat: Integrated recognition, localization and detection
using convolutional networks. arXiv preprint arXiv:1312.6229 (2013).

[16] Haichen Shen, Seungyeop Han, Matthai Philipose, and Arvind Krishnamurthy.
2016. Fast video classi�cation via adaptive cascading of deep models. arXiv
preprint arXiv:1611.06453 (2016).

[17] XinWang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, and Joseph EGonzalez.
2017. IDK Cascades: Fast Deep Learning by Learning not to Overthink. arXiv
preprint arXiv:1706.00885 (2017).

[18] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2017. Shu�eNet: An
Extremely E�cient Convolutional Neural Network for Mobile Devices. CoRR
abs/1707.01083 (2017). arXiv:1707.01083 http://arxiv.org/abs/1707.01083

[19] Barret Zoph and Quoc V Le. 2016. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578 (2016).

http://dl.acm.org/citation.cfm?id=2188385.2188395
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083

	Abstract
	1 Introduction
	2 System Design
	3 Evaluation
	4 Future Work
	5 Conclusion
	References

