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ABSTRACT
Interactive analytics increasingly involves querying for quantiles
over specific sub-populations and time windows of high cardinality
datasets. Data processing engines such as Druid and Spark use
mergeable summaries to estimate quantiles on these large datasets,
but summary merge times are a bottleneck during high-cardinality
aggregation. We show how a compact and efficiently mergeable
quantile sketch can support aggregation workloads. This data struc-
ture, which we refer to as the moments sketch, operates with a
small memory footprint (200 bytes) and computationally efficient
(50ns) merges by tracking only a set of summary statistics, notably
the sample moments. We demonstrate how we can efficiently and
practically estimate quantiles using the method of moments and
the maximum entropy principle, and show how the use of a cascade
further improves query time for threshold predicates. Empirical
evaluation on real-world datasets shows that the moments sketch
can achieve less than 1 percent error with 40× less merge over-
head than comparable summaries, improving end query time in the
MacroBase engine by up to 7× and the Druid engine by up to 60×.

1 INTRODUCTION
Performing interactive multi-dimensional analytics over data from
sensors, devices, phones, and servers increasingly requires com-
puting aggregate statistics for specific subpopulations and time
windows [4, 29, 62]. In applications such as A/B testing [36, 40],
exploratory data analysis [9, 70], and operations monitoring [2, 15],
analysts frequently perform cube-like aggregate queries to better
understand how particular user cohorts, device types, and feature
flags are behaving. In particular, computing quantiles over these
subpopulations is an essential part of debugging and real-time mon-
itoring workflows [26].

As an example of this quantile-driven analysis, our industry col-
laborators collect billions of telemetry events daily from millions of
heterogeneous mobile devices. Each device tracks multiple metrics
including request latency and memory usage, and each device is
associated with dimensional metadata such as application version
and hardware model. The company’s engineers and analysts issue
quantile queries over this telemetry by aggregating by different di-
mensions to both monitor their application (e.g., examine memory
trends across time windows) and debug regressions (e.g., examine
tail latencies across versions).

Performing full scans over rawmetrics can be expensive in terms
of both network bandwidth and storage, so in-memory OLAP en-
gines such as Druid [64, 77] and Spark [37, 78] instead compute
approximate quantiles from a compressed representation of the
data values. By pre-aggregating a summary for each combination
of dimension values, an engine like Druid can reduce query times by
aggregating the relevant summaries directly, effectively operating
over a summary data cube [32, 62]. Figure 1 illustrates how, if such
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Figure 1: Queries across multiple devices and time ranges
can be performed by merging the relevant pre-aggregated
summaries.

summaries are mergeable [3], they can be aggregated without loss
of accuracy. Engines can subsequently calculate quantiles across
specific populations and time ranges by merging the summaries
directly.

A variety of existing mergeable quantile summaries [3, 28, 33] en-
able this functionality, but their merge overheads can lead to severe
performance penalties on high-cardinality datasets. In our example
telemetry deployment, which maintains hundreds of thousands of
dimension combinations at a five-minute granularity, calculating a
quantile over a given 2-week range can require merging millions
of summaries. Based on our experiments (Section 6.2.1), one mil-
lion 1KB GK-sketches [33] require more than 10 seconds to merge,
limiting the types of queries users can ask interactively. For long-
standing and recurring queries, materialized views [42, 47, 58] and
sliding window sketches [25] can reduce this overhead. However,
the combinatorial explosion of dimensions and the cost of main-
taining multiple views means merge time remains an important
bottleneck. Our industry collaborators confirm this need, and report
merges of ten million sketches in production.

In this paper, we enable interactive quantile queries over high-
cardinality aggregates by introducing a compact and efficiently
mergeable quantile sketch and associated quantile estimation rou-
tines. We draw a connection between the classicmethod of moments
for parameter estimation in statistics [74] and the need for efficient
summary data structures. We show that storing the sample mo-
ments µi = 1

n
∑
x i and log-moments νi = 1

n
∑
logi (x) can enable

accurate quantile estimation over a range of real-world datasets
while utilizing fewer than 200 bytes of memory and incurringmerge
times of less than 50 nanoseconds. In the context of mergeable quan-
tile estimation, we refer to our proposed summary data structure
as the moments sketch.

While constructing the moments sketch is straightforward, the
inverse problem of estimating quantiles from the summary is more
complex. The statistics in a moments sketch provide only loose
constraints on the distribution of values in the original dataset:
many distributions might match the moments of a moments sketch
but fail to capture the dataset structure. Therefore, we make use of
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the principle of maximum entropy [39] to compute a “least-biased”
quantile estimate for a moments sketch. Empirically, we find that
this approach yields more accurate estimates than alternative meth-
ods, achieving ϵ ≤ 1% error with 200 bytes of memory. To achieve
this, we also describe a series of practical optimizations to standard
entropy maximization that allow us to compute quantile estimates
in under 1 millisecond on a range of real-world datasets.

Moving beyond simple quantile queries, many complex queries
depend on the quantile estimates of multiple subpopulations. For
example, data exploration systems such as MacroBase [9] are in-
terested in finding all subpopulations that match a given threshold
condition (e.g., subpopulations where the 95th percentile latency
is greater than the global 99th percentile latency). Given a large
number of subpopulations, the cost of millisecond-level quantile
estimates on thousands of subgroups will accumulate. Therefore,
to support threshold queries over multiple populations, we extend
our quantile estimator with a cascade [71], or sequence of increas-
ingly precise and increasingly expensive estimates based on bounds
such as the Markov inequalities. For queries with threshold condi-
tions, the cascades dramatically reduce the overhead of quantile
estimation in a moments sketch, by up to 25×.

We implement the moments sketch both as a reusable library
and as part of the Druid and MacroBase analytics engines. We
empirically compare its accuracy and efficiency with alternative
mergeable quantile summaries on a variety of real-world datasets.
We find that the moments sketch offers 40 to 200× faster merge
times than alternative summaries with comparable accuracy. This
enables 35 to 150× faster query times on real datasets. Moreover,
the moments sketch enables up to 7× faster analytics queries when
integrated with MacroBase and 60× faster end-to-end queries when
integrated with Druid.

In summary, we make the following contributions:

• We illustrate how statistical moments are useful as efficient
mergeable quantile sketches in aggregation and threshold-
based queries over high-cardinality data.

• We demonstrate how statistical and numerical techniques
allow us to solve for accurate quantile estimates in less than
1 ms, and show how the use of a cascade further improves
estimation time on threshold queries by up to 25×.
• We evaluate the use of moments as quantile summaries on a
variety of real-world datasets and show that the moments
sketch enables 35 to 150× faster query times in isolation, up
to 7× faster queries when integrated with MacroBase and
up to 60× faster queries when integrated with Druid over
comparably-accurate quantile summaries.

The remainder of this paper proceeds as follows. In Section 2, we
discuss related work. In Section 3, we review relevant background
material. In Section 4, we describe the proposed moments sketch.
In Section 5, we describe a cascade-based approach for efficiently
answering threshold-based queries. In Section 6, we evaluate the
moments sketch in a series of microbenchmarks. In Section 7, we
evaluate the moments sketch as part of the Druid and MacroBase
systems, and measure its performance in sliding window and low-
precision environments. We conclude in Section 8.

2 RELATEDWORK

High-performance aggregation. The aggregation scenarios in
Section 1 are found in many existing streaming data systems [9,
17, 24, 62, 77], as well as data cube [32, 65], data exploration [2],
and visualization [18] systems. In particular, these systems can
perform interactive aggregations over time windows and along
many cube dimensions, motivating the design of our sketch. Many
of these systems use approximate query processing [4, 34, 55] and
use sampling and summaries to improve query performance, but
do not address data structures specific to quantiles. We believe the
moments sketch serves as a useful primitive in these engines.

Sensor networking is a rich source of algorithms for heavily
resource-constrained settings. Sensor network aggregation systems
[49] support large scale roll-ups, but seminal work in this area is
largely focused on the complementary problem of communication
plans over a network [21, 43, 50]. Mean, min, max, and standard
deviation in particular are used in [49] as functions amenable to
computation-constrained environments, but the authors do not
consider higher moments or their application to quantile estimation.

Several database systems make use of summary statistics in
general-purpose analytics. Muthukrishan et al [57] observe that
the moments are a convenient statistic in streaming settings and
use it to fill in missing integers. Data Canopy [73] uses first and
second moments as an efficiently mergeable statistic for comput-
ing standard deviations and linear regressions. Similarly, systems
on probabilistic data cubes such as [76] use the first and second
moments to prune queries over cube cells that store distributions
of values. In addition, many methods use compressed data repre-
sentations to perform statistical analyses such as linear regression,
logistic regression, and PCA [20, 60, 66, 75]. We are not aware of
prior work utilizing higher moments to efficiently estimate quan-
tiles for high-dimensional aggregation queries.

Quantile summaries. There are a variety of summary data struc-
tures for the ϵ-approximate quantile estimation problem [19, 23, 33,
48, 67]. Some of these summaries assume values from a finite uni-
verse [23, 67], while others operate using only comparisons [3, 33].
Our proposed moments sketch and others [13, 28] operate on real
values. Agarwal et al. [3] provide the initial motivation for merge-
able summaries, as well as a proposed mergeable quantile sketch.
To our knowledge we are the first to evaluate quantile sketches for
the purposes of sub-microsecond merge overheads.

Method ofmoments. Themethod ofmoments is awell-established
statistical technique for estimating the parameters of probability
distributions [74]. The main idea behind this approach is that the
parameters of a distribution of interest P can be related to the ex-
pectations of functions of the random variable X ∼ P . As a general
method for consistent statistical parameter estimation, the method
of moments is used across a wide range of fields, including econo-
metrics [35], physics [31, 53], and machine learning [7, 12, 41]. In
this work, we demonstrate how the method of moments, applied in
conjunction with practical performance optimizations, can scale to
support real-world latency-sensitive query processing workloads.

Maximum entropy principle. The maximum entropy principle
prescribes that one should select the least informative distribution
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that is consistent with the observed data. In the database commu-
nity, this principle has been applied to estimating cardinality [69]
and predicate selectivity [51]. Mead and Papanicolaou [53] apply
the maximum entropy principle to the problem of estimating distri-
butions subject to moment constraints; follow-up work proposes
the use of Chebyshev polynomials for stability [11, 68] and faster
approximation algorithms [10], though we have not seen any prac-
tical implementations suitable for use in a database. The maximum
entropy principle is also used in machine learning, notably in the
context of maximum entropy models [14]. For example, in natu-
ral language processing, maximum entropy models are a popular
choice for tasks such as text classification [59] and sequence tag-
ging [45].

3 BACKGROUND
In this section, we review approximate quantile estimates, merge-
able quantile summaries, and our target query model.

3.1 Quantile Queries
Given a dataset D with n elements, for any ϕ ∈ (0, 1), the ϕ-quantile
is the item x ∈ D with rank r (x) = ⌊ϕn⌋, where the rank of x is the
number of elements inD smaller than x . Computing exact quantiles
in a single pass requires memory linear in the size of the dataset
[56]. This limits the practicality of computing exact quantiles on
large datasets, so we instead focus on approximate quantiles.

An ϵ-approximate ϕ-quantile is an element with rank between
(ϕ − ϵ)n and (ϕ + ϵ)n [3]. Given an estimated ϕ-quantile qϕ , we can
also define its quantile error ε [48] as the following:

ε =
1
n

���rank (
qϕ

)
− ⌊ϕn⌋

��� , (1)

such that an ϵ-approximate quantile has error at most ε . For ex-
ample, given a dataset D = {1, . . . , 1000}, a quantile estimate
q0.5 = 504 for ϕ = 0.5 would have error ε = 0.003. In this pa-
per, we consider datasets D represented by collections of by real
numbers x ∈ R.

Quantile summaries are data structures that provide approximate
quantile estimates for a dataset given space sub-linear in n. These
summaries usually have a parameter kϵ that trades off between
the size of the summary and the accuracy of its estimates. An ϵ-
approximate quantile summary provides ϵ approximateϕ-quantiles,
where ϵ can be a function of space usage and the dataset [19, 23,
33, 67].

3.2 Mergeable Summaries
Agarwal et al. [3] introduce the concept ofmergeability to accurately
combine summaries in distributed settings. Formally, for a summary
with parameter kϵ , we use S(D,kϵ ) to denote a valid summary for
a dataset D. For any pair of datasets D1 and D2, the summarization
routine S is mergeable if there exists an algorithm (i.e., the “merge”
procedure) that produces a combined summary

S(D1 ⊎ D2,kϵ ) = merge(S(D1,kϵ ), S(D2,kϵ ))

from any two input summaries, where ⊎ denotes multiset addition.
Intuitively, a summary is mergeable if there is no accuracy cost

to incrementally computing it over subsets of data. Thus, mergeable

summaries are algebraic aggregate functions in the data cube litera-
ture [32]. As an example, an equi-depth histogram [22] on its own
is not mergeable because there is no way to accurately combine
two overlapping histogram buckets without access to additional
data.

Mergeable summaries are motivated by distributed systems such
as MapReduce: a “map” function can be naturally used to construct
summaries while a “reduce” function merges sketches to calculate
an accurate summary over a large dataset [3]. While a MapReduce
job may require a merge for every mapper, a query over a data
cube can require a merge for each of the potentially millions of
cells in the cube. Any accuracy losses incurred by merges would
compound, so mergeability is essential in this context.

3.3 Query Model
As described in Section 1, we focus on improving the performance
of quantile queries over aggregations on high cardinality datasets.
Given a dataset with d categorical dimensions, we consider data
cubes that maintain summaries for every d-way dimension value
tuple as one natural setting for high performance aggregations, and
many other settings are also applicable [73]. In these settings, query
time is heavily dependent on the number of merges and the time
per merge.

We consider two broad classes of queries in this paper. First, sin-
gle quantile queries ask for quantile estimates for a single specified
population. For example, we can query the 99th percentile of latency
over the last two weeks for a given version of the application:

SELECT percentile(latency , 99) FROM requests

WHERE time > date_sub(curdate(), 2 WEEK)

AND app_version = "v8.2"

To process this query in time tquery, we would need to merge nmerge
summaries, each with runtime overhead tmerge, and then estimate
the quantile from the merged summary with runtime cost test. This
results in total query time:

tquery = tmerge · nmerge + test. (2)

We evaluate the different regimes where queries are bottlenecked
on merges and estimation in Figure 6 in Section 6.2.1: merge time
begins to dominate at around nmerge ≥ 104. We consider loading
the summaries and network communication as additional potential
components to the merge time.

We also consider threshold queries which are conditioned on sub-
groups or windows with percentiles above a specified threshold.
For example, we may be interested in combinations of application
version and hardware platform for which the 99th percentile latency
exceeds 100ms:

SELECT app_version , hw_model ,

PERCENTILE(latency , 99) as p99

FROM requests WHERE p99 > 100

GROUP BY app_version , hw_model

These queries have additional runtime cost that depends on the
number of groups ngroups we operate over since test can be signifi-
cant when one is searching for high quantiles over thousands of
sub-groups. This results in total query time:

tquery = tmerge · nmerge + test · ngroups. (3)
3
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Figure 2: The moments sketch is an array of floating point
values.

Algorithm 1:Moments sketch construction
input: number of moments k
initialization

xmin,xmax ←∞,−∞
®µ, ®ν ← ®0, ®0
n ← 0

function Update(x)
xmin ← min{x ,xmin}
xmax ← max{x ,xmax}
n ← n + 1
for i ∈ {1, . . . ,k} do

µi ← n−1
n µi +

1
n x

i ▷ Standard moments
if x > 0 then

νi ← n−1
n νi +

1
n logi (x) ▷ Log-moments

As described in Section 1, such queries are very useful for debugging
and data exploration.

4 THE MOMENTS SKETCH
In this section, we describe how we perform quantile estimation
using the moments sketch. First, we review the summary statistics
stored in the moments sketch and describe how they comprise an
efficiently mergeable sketch. Second, we describe how we can use
the method of moments and the maximum entropy principle to
estimate quantiles from themoments sketch, with details on howwe
resolve practical difficulties with numerical stability and estimation
time. We conclude with a discussion of theoretical guarantees on
the approximation error of quantiles estimated from the sketch.

4.1 Moments Sketch Statistics
The moments sketch of a dataset D is a set of floating point values:
the minimum value xmin, the maximum value xmax, the count n,
the sample moments µi = 1

n
∑
x ∈D x i and the sample logarithmic

moments νi = 1
n

∑
x ∈D logi (x) for i ∈ {1, . . . ,k} (Figure 2). The

moments sketch has an integer parameter k , which describes the
highest power used in the moments. We refer to k as the order of a
moments sketch. Each sample moment provides additional infor-
mation about the distribution, so higher-order moments sketches
are more precise but have higher space and computation time over-
heads.

We construct a moments sketch for a dataset D using either
streaming point-wise updates (Algorithm 1) or by merging existing
moments sketches. For each data point, we update the minimum
and maximum, then accumulate the counts and moments. As an
implementation detail, we can accumulate the unscaled sums

∑
x i

and
∑
logi (x) instead of the µi ,νi directly. We merge two moments

sketches with the same k by combining the minimum, maximum,
count, and the moments via comparison and potentially vectorized
addition.

Log-moments. Themoments sketch records logarithmicmoments
(log-moments) in order to recover better quantile estimates for
long-tailed datasets. In particular, taking the logarithm of data
points is useful when values in the dataset can vary over several
orders of magnitude. In general, when updating a moments sketch
in a streaming manner or when maintaining multiple moments
sketches in a distributed setting, we cannot know a priori whether
standard moments or log-moments are more appropriate for the
given dataset. Therefore, our default approach is to store both sets of
moments up to the same order k . Given additional prior knowledge
of the data distribution, we may choose to maintain a moments
sketch with only a single set of moments.

Data points with negative values pose a potential problem for
the log-moments since the logarithm is undefined for these points.
There are several strategies for addressing this, including storing
separate sums for positive and negative values and shifting all
values so that they are positive. In this paper, we adopt the simple
approach of ignoring the log sums when there are any negative
values, and computing estimates using the remaining statistics.

Remarkonpathological distributions. Wedistinguish between
the sample moments tracked by the moments sketch, and the mo-
ments of a distribution with density f (x) given by

∫
x i f (x)dx .

The moments of certain “pathological” distributions may be un-
defined; for example, the standard Cauchy distribution f (x) =
π−1

(
1 + x2

)−1 does not have finite moments of any order. How-
ever, the moments sketch tracks the moments of the empirical
distribution, which are always well-defined. Note that this suits our
goal of estimating quantiles on the empirical distribution.

4.2 Estimating Quantiles

Method of moments. To estimate quantiles from a moments
sketch, we apply the method of moments [7, 12, 41, 74] to con-
struct a distribution f (x) whose moments match those recorded
in the sketch. Specifically, given a moments sketch with minimum
xmin and maximum xmax, we solve for a pdf f (x) supported on
[xmin,xmax] such that

∫ xmax
xmin

x i f (x)dx = µi and
∫ xmax
xmin

logi (x)f (x)dx =
νi . We can then report the quantiles of f (x) as estimates for the
quantiles of the dataset.

In general, a finite set of moments does not uniquely determine
a distribution [5]. That is, there are often many possible distribu-
tions with varying quantiles that each match a given set of sample
moments. Therefore, we must disambiguate between them.

Maximum entropy. In this work, we use the principle of max-
imum entropy [39] to select a unique distribution that satisfies
the given moment constraints. Intuitively, the differential Shan-
non entropy H of a distribution with pdf f (x), defined as H [f ] =
−

∫
X f (x) log f (x)dx , is a measure of the degree of uninformative-

ness of the distribution. For example, a uniform distribution has
higher entropy than a point mass distribution. Thus, the maximum
entropy distribution can be seen as the distribution that encodes the
least additional information about the data beyond that captured
by the given moment constraints.
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Applying themaximum entropy principle to themoments sketch,
we estimate quantiles by solving for the pdf f that maximizes the
entropy while matching the moments in the sketch. Following,
we estimate quantiles using numeric integration and the Brent’s
method for root finding [61] .

In practice, we find that the use of maximum entropy distribu-
tions yields quantile estimates with comparable accuracy to baseline
methods on a range of real-world datasets. We discuss our empirical
results further in Section 6.2.3.

Optimization. We now describe how to solve for the maximum
entropy distribution f . We trade off between accuracy and estima-
tion time by solving for f subject to the first k1 standard moments
and k2 log-moments stored in the sketch; incorporating more mo-
ments leads to more precise estimates but more computationally
expensive estimation. As previously noted, for datasets with non-
positive values (i.e., xmin ≤ 0), we set k2 = 0. Therefore, our goal is
to find the solution f to the following optimization problem:

maximize
f ∈F[xmin,xmax]

H [f ] (4)

subject to
∫ xmax

xmin

x i f (x)dx = µi , i ∈ {1, . . . ,k1}∫ xmax

xmin

logi (x)f (x)dx = νi , i ∈ {1, . . . ,k2}

where F [xmin,xmax] denotes the set of distributions supported on
[xmin,xmax].

It is well known that the solution to Problem 4 is a member of
the class of exponential family distributions [39]:

f (x ;θ ) = exp ©­«θ0 +
k1∑
i=1

θix
i +

k2∑
i=1

θk1+i log
i (x)ª®¬ ,

where θ0 is a normalization constant such that f (x ;θ ) integrates to
1 over the domain [xmin,xmax]. Finding the distribution f (x ;θ ) that
satisfies the moment constraints is a convex optimization problem
(over the parameters θ ) that we solve using Newton’s method [53].

4.3 Practical Implementation
In this section, we outline implementation details that are impor-
tant for solving the constrained entropy maximization problem
in practice. Let L(θ ) denote the objective that we optimize using
Newton’s method. The Hessian of L takes the form:

∇2L(θ )i j =
∫ xmax

xmin

mi (x)mj (x)f (x ;θ )dx , (5)

where the functionsmi (x) range over the set of functions

{x i : i ∈ {1, . . . ,k1}} ∪ {logi (x) : i ∈ {1, . . . ,k2}}.

There are two main challenges in computations involving the
Hessian in each Newton step. First, ∇2L can be nearly singular and
cause numerical instabilities in Newton’s method that prevent or
slow down convergence. Second, since the integral in Eq. 5 has no
closed form, the cost of performing O(k2) numerical integrations
to compute ∇2L in each iteration can be expensive. We describe
our solutions to each of these issues in turn, and then discuss how
they influence our choice of k and k1,k2 during optimization.

Numerical Stability. To quantify the degree of numerical instabil-
ity, we use the condition number of the matrix ∇2L. The condition
number κ(A) of a matrix A describes how close a matrix is to being
singular: matrices with high condition number are close to being
singular, and log10 κ provides an estimate of how many digits of
precision are lost when inverting A. In particular, the use of the
powersmi (x) ∈ {x i : i ∈ {1, . . . ,k1}} can result in ill-conditioned
Hessians [30]. For example, when solving for a maximum entropy
distribution with k1 = 8,k2 = 0,xmin = 20, and xmax = 100, we en-
countered κ ≈ 3 · 1031 at θ = 0, making even the very first Newton
step infeasible using double precision.

We mitigate this issue by using a change of basis from the func-
tionsmi (x) = x j andmi (x) = logj (x) to the basis of Chebyshev
polynomials Ti (x) [11, 61]. We define the new basis m̃i as follows:

m̃i (x) =
{
Ti (s1(x)), i ∈ {1, . . . ,k1}
Ti−k1 (s2(log(x))), i ∈ {k1 + 1, . . . ,k1 + k2}

where s1, s2 are linear scaling functions tomap the domain to [−1, 1].
The new basis functions m̃i (x) can be expressed in terms of x j and
logj (x) using standard formulae for Chebyshev polynomials and
the binomial expansion [52]. Using this new basis for the same
problem instance as above, we found that the condition number
was reduced to κ ≈ 11.3, making precision loss during each Newton
step less of a concern.

Efficient Integration. Naïvely computing the Hessian requires
evaluating O(k2) numerical integrals per iteration, which can lead
to prohibitively slow estimation time.We reduce this computational
overhead by using polynomial approximations of the functions
appearing in the integrands. The use of these of these polynomial
approximations allows us to compute the integrals efficiently by
obviating the need for expensive numerical integration.

Observe that if the integrands m̃i (x)m̃j (x)f (x ;θ ) were express-
ible as polynomials in x , then each integral can be evaluated in
closed form. The factors in the integrand that do not appear as
polynomials in x are m̃i (x), i ∈ {k1 + 1, . . . ,k1 + k2}, which are
polynomials in log(x), and the pdf f (x ;θ ). Therefore, we compute
Chebyshev polynomial approximations of these factors using a fast
cosine transform [61] and replace each instance in the integrands
with its corresponding approximation.1 Using this method, each
Hessian evaluation thus requires k2+1 polynomial approximations.

In practice, this approximation is crucial to achieving fast esti-
mation time. As we show in our empirical evaluation (Section 6.3),
this polynomial approximation strategy reduces estimation time
by over 20× compared to the alternative of running numerical
integration to compute each entry. We find in our experiments
that the major bottleneck during maximum entropy optimization
is constructing the k2 + 1 polynomial approximations and then
symbolically computing the O((k1 + k2)2) entries in the Hessian.

Choosing k . The two optimizations we have described improve
the stability and runtime of our maximum entropy solver. However,
for large k these can still be an issue. In this section we discuss how
k affects the operation of our estimator implementation.

1This approach is similar to the idea behind weighted Clenshaw-Curtis integration
[61].
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Given a moments sketch with k moments and log moments,
users can configure how many of each k1,k2 they would like to
make use of when estimating quantiles. In our implementation
we use a set of default heuristics to select k1,k2 with condition
number below a threshold κmax. Our heuristics greedily increment
k1 and k2, favoring moments where we do not detect precision
loss and which are closer to the moments expected from a uniform
distribution.

The precision of the higher moments is also limited for large
k . The moments sketch does not track Chebyshev polynomial mo-
ments directly since Chebyshev polynomials are difficult to rescale
when merging summaries with different xmin,xmax. Instead, we
calculate them from the moments µi and νi , incurring numeric
precision loss in the process since the conversion relies on cancel-
lation between the µi ,νi . The precision loss is significant on some
datasets when k ≥ 15 (e.g. Fig. 9 in Sec. 6.2.3), so in this paper we
focus on the regime where k < 15.

If the dataset range is fixed then storing Chebyshev polynomial
moments directly in a moments sketch is an alternative. Further-
more, if users have the space budget, the moments sketch can be
extended with moments of additional transformations such as the
power transforms x ′ = x1/p . We view the development of hybrid
sketches that supplement the moments sketch with additional sta-
tistics and data structures as an interesting area for future work.

4.4 Quantile Error Bounds
Recall that we estimate quantiles using the maximum entropy distri-
bution subject to the moment constraints recorded in the moments
sketch. Since the true empirical distribution is in general not equal
to the estimated maximum entropy distribution, to what extent
can the quantiles estimated from the sketch deviate from the true
quantiles? In this section, we discuss worst-case bounds on the
discrepancy between any two distributions which share the same
moments, and relate these to bounds on the quantile estimate errors.
In practice, error on non-adversarial datasets is lower than these
bounds suggest.

We consider distributions supported on [−1, 1]: we can scale and
shift any distribution with bounded support to match. By Proposi-
tion 1 in Kong and Valiant [44], any two distributions supported
on [−1, 1] with densities f and д and standard moments µf , µд , the
Wasserstein distance (or Earth Mover’s distance)W1(f ,д) between
f and д is bounded by:

W1(f ,д) ≤ O

(
1
k
+ 3k ∥µf − µд ∥2

)
.

For univariate distributions f and д, the Wasserstein distance
between the distributions is equal to the L1 distance between their
respective cumulative distribution functions F andG (see Theorem
6.0.2 in [6]). Thus:

W1(f ,д) =
∫ +1
−1
|F (x) −G(x)| dx .

If f is the true dataset distribution, we estimate qϕ by calculating
the ϕ-quantile of the maximum entropy distribution f̂ . The quantile
error ε(qϕ ) is then equal to the gap between the CDFs: ε(qϕ ) =
|F (qϕ ) − F̂ (qϕ )|. Therefore, the average quantile error over the

support [−1, 1] is bounded as follows:∫ +1
−1

ε(x)dx ≤ O

(
1
k
+ 3k ∥µf − µ f̂ ∥2

)
. (6)

Since we can run Newton’s method until the moments µf and µ f̂
match to any desired precision, the 3k ∥µf − µ f̂ ∥2 term is negligible.

Equation 6 does not directly apply to the ϵavg used in Section 6,
which is averaged over ϕ for uniformly spaced ϕ-quantiles rather
than over the support of the distribution. Since qϕ = F̂−1(ϕ) and
ϕ = F̂ (x), we can relate ϵavg to Eqn 6 using our maximum entropy
distribution f̂ :∫ 1

0
ε(qϕ )dϕ =

∫ +1
−1

ε(x) f̂ (x)dx ≤ O

(
f̂max
k

)
where f̂max is the maximum density of our estimate. Thus, we ex-
pect the average quantile error ϵavg to have a decreasing upper
bound as k increases, with higher potential error when f̂ has re-
gions of high density relative to its support. Though these bounds
are too conservative to be useful in practice, they provide useful
intuition on how worst case error can vary with k and f̂ (c.f. Fig-
ure 8).

5 THRESHOLD QUERIES
We described in Section 3.3 two types of queries: single quantile
queries and threshold queries over multiple groups. The optimiza-
tions in Section 4.3 can bring quantile estimation overhead down
to ≤ 1ms, which is sufficient for interactive latencies on single
quantile queries. In this section we show how we can further re-
duce quantile estimation overheads on threshold queries. Instead
of computing the quantile on each sub-group directly, we compute
a sequence of progressively more precise bounds in a cascade [71],
and only use more expensive estimators when necessary. We first
describe a series of bounds relevant to the moments sketch in Sec-
tion 5.1 and then show how they can be used in end-to-end queries
in Section 5.2.

5.1 Moment-based inequalities
Given the statistics in a moments sketch, we apply a variety of clas-
sical inequalities to derive bounds on the quantiles. These provide
some worst-case error guarantees on quantile estimates which we
can report to users along with the quantile estimate, and are also
essential in allowing fast query processing on threshold queries
over multiple groups.

One simple inequality we make use of is Markov’s inequality.
Given a non-negative datasetD with moments µi Markov’s inequal-
ity tells us that for any value x , rank(x) ≥ n

(
1 − µk

tk

)
where the

rank is the number of elements in D less than x . We apply this to
arbitrary datasets using the transformationD ′ = {x−xmin : x ∈ D}
since one can compute the moments µ ′i of D

′ using the binomial
formula. Similarly we can use the transformations D− = {xmax−x :
x ∈ D} and Dl = {log(x) : x ∈ D} to obtain lower bounds and
analogous bounds on the log moments.

We apply Markov’s inequality to a quantile estimate x = qϕ on
each of the transformed datasets and for each moment µk above to
obtain upper or lower bounds on the rank r (t) and the take tightest
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Algorithm 2: Threshold Query Cascade
macro CheckBound(rlower, rupper, rt )

if rlower > rt then
return true

else if rupper < rt then
return false

function Threshold(threshold t , quantile ϕ)
if t > xmax then

return false
if t < xmin then

return true
rlower, rupper ← MarkovBound(t) ▷ Markov Bound
CheckBound(rlower, rupper, nϕ)
rlower, rupper ← RTTBound(t) ▷ RTT Bound
CheckBound(rlower, rupper, nϕ)
qϕ ← MaxEntQuantile(ϕ) ▷ Maximum Entropy
return qϕ > t

upper and lower bound. These upper and lower bounds on the
rank then provide an upper bound on the quantile error ϵ for a
ϕ-quantile estimate. We refer to this procedure as the MarkovBound
procedure.

The authors in [63] provide a procedure for computing tighter
but more expensive bounds on the CDF F (t) of a distribution given
its moments.We refer to this procedure as the RTTBound procedure,
and as with the Markov bounds, use it to bound the rank of a
computed quantile estimate qϕ . The RTTBound procedure does not
make use of the standardmoments and logmoments simultaneously.
When applying RTTBound to the moments sketch, we run the
RTTBound procedure once on the standard moments and once on
log moments and take the tighter of the bounds.

5.2 Cascades for Threshold queries
Given a moments sketch, Algorithm 2 shows how we calculate
Threshold(t ,ϕ): whether the dataset has quantile estimateqϕ above
a fixed cutoff t . We use this routine whenever we answer queries
on groups with a predicate qϕ > t , allowing us to check whether
a subgroup should be included in the results without computing
the quantile estimate directly. The threshold check routine first
performs a simple filter on whether the threshold t falls in the
range [xmin,xmax]. Then, we can use the Markov inequalities and
the RTTBound routine to calculate lower and upper bounds on the
rank of the threshold rank(t) in the subpopulation. These bounds
are used to determine if we can resolve the threshold predicate
immediately. If not, we finally use our entropy optimization routine
to estimate qϕ .

The Markov and RTTBound bounds are cheaper to compute
than our maximum entropy estimate, making threshold predicates
cheaper to evaluate than explicit quantile estimates. The bounds
apply to any distribution or dataset that matches the moments
in a moments sketch, so this routine has no false negatives and is
consistent with calculating the maximum entropy quantile estimate
up front.

6 EVALUATION
In this section we evaluate the efficiency and accuracy of the mo-
ments sketch in a series of microbenchmarks, and then show how
the moments sketch provides end-to-end performance improve-
ments in the Druid and Macrobase data analytics engines [9, 77].

This evaluation demonstrates that:
(1) The moments sketch supports 35 to 200× faster query times

than comparably accurate summaries on quantile aggrega-
tions.

(2) The moments sketch provides ϵavg ≤ 0.01 estimates across
a range of real-world datasets using less than 200 bytes of
storage.

(3) Maximum entropy estimation is more accurate than alter-
native moment-based quantile estimates, and our solver im-
proves estimation time by 200× over naive solutions.

(4) Integrating the moments sketch as a user-defined sketch
provides 7× faster quantile queries than the default quantile
summary in Druid workloads.

(5) Applying a cascade of bounds to moments sketch estimation
provides 25× higher query throughput compared to direct
moments sketch usage in Macrobase threshold queries .

Throughout the evaluations, the moments sketch is able to ac-
celerate a variety of workloads when the number of summary
aggregations exceeds the number of queries, when space is at a
premium, and when interactive sub-100ms query response times
are essential.

6.1 Experimental Setup
We implement the moments sketch and its quantile estimation rou-
tines in Java2. This allows for direct comparisons with the open
source quantile summaries in the Java-based Yahoo! Data Sketches
library [1], as well as those in Spark-SQL [8] and Druid [77], and
also enables integration with the Java-based Druid [77] and Mac-
roBase [9] systems. In our experimental results, we use the abbre-
viation M-Sketch to refer to the moments sketch.

We compare against a number of alternative quantile summaries:
our implementation of amergeable equi-width histogram (EW-Hist),
the Greenwald-Khanna [33] (GK) sketch as implemented in Spark-
SQL [8], the AVL-tree T-Digest [28] sketch (T-Digest), the stream-
ing histogram (S-Hist) in [13] as implemented in Druid, reser-
voir sampling [72] (Sampling), and the low-discrepancy mergeable
sketch (MS2012) from [3], both implemented in the Yahoo! datas-
ketches library [1]. We implemented the EW-Hist as a mergeable
sketch as in [62] by using power-of-two ranges and re-scaling on
merge. Each quantile summary has a size parameter controlling
its memory usage, which we will vary in our experiments. Our
implementations and benchmarks use double precision floating
point values. During moments sketch quantile estimation we run
Newton’s method until the moments match to within δ = 10−9,
and select k1,k2 using a maximum condition number κmax = 104.

We quantify the accuracy of a quantile estimate using the quan-
tile error ε as defined in Section 3.1. Then, as in [48] we can compare
the accuracies of summaries on a given dataset by computing their

2https://github.com/stanford-futuredata/msketch
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Figure 3: Total query time on ϵavg ≤ .01 quantile aggregation
queries. The moments sketch enables significantly faster
queries at this accuracy.

average error ϵavg over a set of uniformly spaced ϕ-quantiles. In the
evaluation that follows, we test on 21 equally spaced ϕ between
0.01 and 0.99.

We evaluate each summary via single-threaded experiments on
a machine with an Intel Xeon E5-4657L 2.40GHz processor and 1TB
of RAM, omitting the time to load data from disk.

6.1.1 Datasets. We make use of six real-valued datasets in our
experiments: The milan dataset consists of 81 million Internet us-
age measurements from Nov. 2013 in the Telecom Italia Call Data
Records [38]. The hepmass dataset consists of 10.5 million values
corresponding to the first feature in the UCI [46] HEPMASS dataset.
The occupancy dataset consists of 20 thousand CO2 measurements
from the UCI Occupancy Detection dataset. The retail dataset con-
sists of 530 thousand positive purchase quantities from the UCI
Online Retail dataset. The power dataset consists of 2 million Global
Active Power measurements from the UCI Individual Household
Electric Power Consumption dataset. The exponential dataset con-
sists of 100million synthetic values from an exponential distribution
with λ = 1.

6.2 Performance Benchmarks
We begin with a series of microbenchmarks evaluating themoments
sketch query times and accuracy.

6.2.1 Query Time. Our primary metric for evaluating the mo-
ments sketch is total query processing time. We evaluate quantile
query times over the cube aggregation scenarios described in Sec-
tion 1, by dividing our datasets into cells of 200 values – corre-
sponding to pre-aggregated cube data – and maintaining quantile
summaries for each cell. In this performance microbenchmark, the
cells are grouped based on their sequence in the dataset: in Section 7
we will examine more realistic groupings. Then we measure the
time it takes to calculate a quantile estimate for the entire dataset
by performing a streaming sequence of merges.

Figure 3 shows the total query time to merge the summaries and
then compute a quantile estimate when each summary is instanti-
ated at the smallest size sufficient to achieve ϵavg ≤ .01 accuracy.
We provide the parameters we used and average observed space
usage in Table 1. On the long-tailed milan dataset, the S-Hist and
EW-Hist summaries are unable to achieve ϵavg ≤ .01 accuracy with
less than 100 thousand buckets, so we provide timings at 100 buck-
ets for comparison – their query times are worse with more buckets.

dataset milan hepmass
sketch param size (b) param size (b)

M-Sketch order k = 10 200 k = 3 72
MS2012 size k = 32 5920 k = 32 5150
GK error ϵ = 1

50 592 ϵ = 1
50 608

T-Digest δ = 5.0 769 δ = 1.5 93
Sampling 1000 samples 8010 1000 8010
S-Hist 100 bins 1220 100 1220
EW-Hist 100 bins 812 15 132

Table 1: Summary size parameters used in Figure 3. We use
these parameters to compare the query times at ϵavg ≤ .01
accuracy.
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Figure 4: Per-merge latencies. Themoments sketch provides
faster merge times than alternative summaries at the same
size.

The moments sketch is the only accurate summary which provides
sub-100ms query times on both datasets, and provides 35 to 70×
faster query times than MS2012, the next fastest accurate summary.

6.2.2 Merge and Estimation Time. Recall that for a basic aggre-
gate quantile query tquery = tmerge · nmerge + test. Thus we also
measure tmerge and test to quantify the regimes where the moments
sketch performs well. In these experiments, we vary the summary
size parameters, though many summaries have a minimum size,
and the moments sketch runs into floating point precision issues
on some datasets for k ≥ 15 so we do not include results for larger
k (see Figure 9).

In Figure 4 we evaluate the average time required to merge one
of the cell summaries. Larger summaries are more expensive to
merge, and the moments sketch has faster (< 50ns) merge times
throughout its size range. When comparing summaries using the
parameters in Table 1, the moments sketch has up to 200x faster
merge times than other summaries with the same accuracy.

The other major contributor to query time is estimation time.
In Figure 5 we measure the time to estimate quantiles given an
existing summary. The moments sketch provides on average 2 ms
estimation times, though estimation time can be higher for small k
when our estimator chooses higher k1,k2 to achieve better accuracy.
This is the cause for the spike at k = 4 in the milan dataset and users
can can mitigate this by lowering the condition number threshold
κmax. Other summaries support microsecond estimation times. The
moments sketch thus offers a tradeoff of better merge time for
worse estimation time. If users require faster estimation times, the
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Figure 5: Quantile Estimation time. Estimation time on the
moments sketch is slower than other sketches but under
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inates moments sketch query time for nmerge ≥ 104.

cascades in Section 5.2 and the alternative estimators in Section 6.3
can assist.

We show how the merge time and estimation time tradeoff de-
fine regimes where each component dominates depending on the
number of merges. In Figure 6 we measure how the query time
changes for queries requiring different numbers of merges over pre-
aggregated summaries on cells of 200 rows. We use the moments
sketch with k = 10 and compare against the k = 32 MS2012 sketch
as a baseline. Since the query time for the moments sketch is in
milliseconds, merge time begins to dominate for nmerge ≥ 104 and
beyond that the moments sketch provides better performance than
the MS2012 sketch. However, the moments sketch estimation times
dominate when nmerge ≤ 100.

6.2.3 Accuracy. The moments sketch accuracy is dataset depen-
dent, so in this section we compare the average quantile error on
our evaluation datasets.

Figure 7 illustrates the average quantile error ϵavg for summaries
of different sizes. The moments sketch achieves ϵ ≤ 10−4 accuracy
on the synthetic exponential dataset, and ϵ ≤ 10−3 accuracy on
the high entropy hepmass dataset. On other datasets it is able to
achieve ϵavg ≤ 0.01 with less than 200 bytes of space. The EW-Hist
summary, while efficient to merge, provides less accurate estimates
than the moments sketch and low accuracy in the long-tailed milan
and retail datasets. The moments sketch offers a unique combi-
nation of fast merge times, small space usage, and accuracy on
real-world datasets.

For comparison, Figure 8 shows the average guaranteed upper
bound error provided by different summaries. These are in general
higher than the observed errors. We use the RTTBound routine in
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Figure 7: Average error for summaries of different sizes. The
moments sketch delivers consistent ϵavg ≤ 0.015 with less
than 200 bytes.
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Figure 8: Average bound size for summaries of different
sizes. No summary is able to provide ϵbound ≤ .01 guaran-
tees with less than 1000 bytes.

Section 5.1 to bound the moments sketch error. We omit the S-Hist
since it does not provide upper bounds.

We do not evaluate the moments sketch for k ≥ 15 since we
use Chebyshev polynomials as described in Section 4.3 during max-
imum entropy estimation, and the precision loss due to calculat-
ing Chebyshev polynomials from the moments sketch grows with
higher k . Without converting to Chebyshev polynomials, the condi-
tion number of the optimization problem would grow even faster so
we are limited to k ≤ 15. Figure 9 shows the precision loss during
Chebyshev polynomial calculation ∆µ = |µi − µ̂i | where µi is the
true Chebyshev moment and µ̂i is the value calculated from the
moments sketch. Precision loss is severe on datasets such as the
occupancy dataset for k ≥ 20.

Unlike the EW-Hist summary, the moments sketch can remain
accurate in the presence of very large values in a dataset. In Fig-
ure 10 we evaluate the effect of adding a fixed fraction δ = 0.01 of
outlier values from a Gaussian with mean µo and standard deviation
σ = 0.1 to a dataset of 10 million standard Gaussian points. As we
increase the magnitude µo of the outliers, the EW-Hist summaries
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with 20 and 100 bins lose accuracy though a moments sketch with
k = 11 remains accurate. The MS2012 sketch is agnostic to value
magnitudes and is unaffected by the outliers. If extremely large out-
liers are expected, floating point precision suffers and the moments
sketch can be used in conjunction with standard outlier removal
techniques.

6.3 Quantile Estimation Lesion Study
To evaluate each component of our quantile estimator design, we
compared the accuracy and estimation time of a variety of alterna-
tive estimators on the milan and hepmass datasets. We evaluate the
impact of using log moments, the maximum entropy distribution,
and our optimizations to estimation.

To examine effectiveness of log moments, we compare our max-
imum entropy quantile estimator accuracy with and without log
moments. For a fair comparison, we compare the estimates pro-
duced from k standard moments and no log moments with those
produced from up to k

2 of each. Figure 11 illustrates how on some
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Figure 12: Lesion study comparing our optimizedmaximum
entropy solver to other estimators. Our opt estimator pro-
vides at least 5× less error than estimators that do not use
maximum entropy, and up to 200× faster estimation times
than naive maximum entropy solvers.

long-tailed datasets, notably milan and retail, log moments reduce
the error from ϵ > .15 to ϵ < .015, given the same total amount of
moments. On other datasets, log moments do not have a significant
impact, but we include them in the moments sketch for merges
with populations that will benefit from log moments.

We compare our estimator with a number of other estimators
that make use of the same moments. Some of these estimators do
not make use of the maximum entropy principle. The gaussian
estimator fits a Gaussian distribution to the mean and standard
deviation. The mnat estimator uses the closed form discrete CDF
estimator in [54]. The svd estimator discretizes the domain and uses
singular value decomposition to solve for a distribution with match-
ing moments. The cvx-min estimator also discretizes the domain
and uses a convex solver a distribution with minimal maximum
density and matching moments. Other estimators solve for the
maximum entropy principle using alternative techniques. The cvx-
maxent estimator discretizes the domain and uses a convex solver
to maximize the entropy and match the moments, as described in
Chapter 7 in [16]. The newton estimator implements our estimator
without the integration techniques in Sec. 4.3, and uses adaptive
Romberg integration instead [61].

Figure 12 illustrates the average quantile error and estimation
time for these estimators. We run these experiments with k = 10
moments. For uniform comparisons with other estimators, on the
milan dataset we only use the log moments, and on the hepmass
dataset we only use the standard moments. We perform all dis-
cretizations using 1000 uniformly spaced points, and we use the
ECOS convex solver [27]. Our maximum entropy solver provides
at least 5× less error than estimators that do not use maximum
entropy, and better accuracy than estimating the maximum entropy
using a discretized grid. Furthermore, our optimizations are able
to improve the estimation time by a factor of up to 200× over an
implementation using generic solvers.
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ments sketch allows for faster query times than the compa-
rable S-Hist summary with 100 bins. Runtime for a native
sum operation is a lower bound on query time.

7 APPLYING THE MOMENTS SKETCH
In this section, we evaluate how the moments sketch merge and
quantile estimation routines affect performance in larger data sys-
tems. In particular, we will examine how the moments sketch can
improve end-to-end query performance in the Druid analytics en-
gine, as part of a cascade in the Macrobase feature selection en-
gine [9], and as part of exploratory sliding window queries. Finally,
we will measure how moments sketch space usage can be further
reduced in space-constrained settings using reduced precision float-
ing point representations.

7.1 Druid Integration
To illustrate the utility of the moments sketch in a modern analytics
engine, we integrate the moments sketch with Druid [77]. We do
this by implementing moments sketch as an aggregation function
extension, and compare the total query time on quantile queries
of the moments sketch with the default S-Hist summary used in
Druid and introduced in [13]. The authors in [13] observe on aver-
age 5% error for an S-Hist with 100 centroids, so we benchmark
a moments sketch with k = 10 against S-Hists with 10, 100, and
1000 centroids.

In our experiments, we deployed Druid on a single node – the
same machine described in section 6.1 – with the same base con-
figuration used in the default Druid quickstart. In particular, this
configuration dedicates 2 threads to process aggregations. Then, we
ingest 26 million entries from the milan dataset at a one hour granu-
larity and construct a cube over the grid ID and country dimensions,
resulting in 10 million cells.

Figure 13 compares the total query time using the different sum-
maries. The moments sketch provides 7× lower query times than a
S-Hist with 100 bins. Furthermore, as discussed in Section 6.2.1,
any S-Hist with fewer than 10 thousand buckets provides worse
accuracy on milan data than the moments sketch. As a best-case
baseline, we also show the time taken to compute a native sum
query on the same data. The 1 ms cost of solving for quantile esti-
mates from the moments sketch on this dataset is negligible here.

7.2 Threshold queries
In this section we evaluate how well the moments sketch and the
cascades described in Section 5.2 improve performance when pro-
cessing queries with threshold predicates. First we show in Sec-
tion 7.2.1 how data exploration engines such as MacroBase benefit
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Figure 14: Runtime of MacroBase queries: the final mo-
ments sketch cascade outperforms queries using alternate
sketches.

from using the moments sketch to search for anomalous dimension
values. Then, we show in Section 7.2.2 how historical analytics
queries can use the moments sketch to search and alert on sliding
windows.

7.2.1 MacroBase Integration. The MacroBase engine searches
for dimension values with unusually high outlier rates in a dataset
[9]. For example, given an overall 2% outlier rate, MacroBase may
report when a specific app version has an outlier rate of 20%. We
integrate the moments sketch with a simplified deployment of Mac-
roBase where all values greater than the global 99th percentile t99
are considered outliers. We then query MacroBase for all dimension
values with outlier rate at least r = 30× greater than the overall
outlier rate. This is equivalent to finding subpopulations whose
70th percentile is greater than t99.

Given a cube with pre-aggregated moments sketches for each
dimension value combination and no materialized roll-ups, Mac-
roBase merges the moments sketches to calculate the global t99, and
then runs Algorithm 2 on every dimension-value subpopulation,
searching for subgroups with q.7 > t99. We evaluate the perfor-
mance of this query on 80 million rows of the milan internet usage
data from November 2013, pre-aggregated by grid ID, country, and
at a four hour granularity. This resulted in 13 million cube cells,
each with its own moments sketch.

Running the MacroBase query produces 19 candidate dimension
values. We compare the total time to process this query using direct
quantile estimates, our cascades, and the alternative MS2012 quan-
tile sketch. In the first approach (MS2012a), we merge summaries
during MacroBase execution as we do with a moments sketch. In
the second approach (MS2012b), we take advantage of the fast query
time of the MS2012 sketch to calculate the number of values greater
than the t99 for each dimension value combination – each cube
cell – so that MacroBase can accumulate these counts directly, in-
stead of the sketches. This approach incurs a higher query time
but avoids much of the cost of merging. We present this as an opti-
mistic baseline, so it is not always a feasible substitute for merging
summaries.

Figure 14 shows the query times for these different methods: the
baseline method calculates quantile estimates directly for every
threshold, we show the effect of incrementally adding each stage of
our cascade ending with +RTTBound, and we also compare against
the two usages of the MS2012 sketch. Each successive stage of
the cascade improves query time substantially. With the complete
cascade, estimation time is negligible compared to merge time.
Furthermore, the moments sketch with cascades has 7.9× lower
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Figure 16: Sliding window query: moments sketch with cas-
cades runs 13× faster than MS2012.

query times than using the MS2012 sketch, and even 3.7× lower
query times than the MS2012b baseline.

In Figure 15 we examine the impact the cascade has on estimation
time directly. Each additional cascade stage improves threshold
query throughput and is more expensive than the last. The complete
cascade is over 250× faster than this baseline, and 25× faster than
just using a simple range check.

7.2.2 Sliding WindowQueries. Threshold predicates are broadly
applicable in data exploration queries. In this section, we evaluate
how the moments sketch and our cascade improves performance
on queries for sliding windows that exceed an alert threshold. This
is useful when, for instance, users are searching for time windows
of unusually high CPU usage spikes.

For this benchmark, we aggregated the 80 million rows of the
milan dataset at a 10-minute granularity, which produced 4320
panes that spanned the month of November. We augmented the mi-
lan data with two spikes corresponding to hypothetical anomalies.
Each spike spanned a two-hour time frame and contributed 10%
more data to those time frames. Given a global 99th percentile of
around 500 and a maximum value of 8000, we added spikes with
values x = 2000 and x = 1000

We then queried for the 4-hour time windows whose 99th per-
centile was above a threshold t = 1500. When processing this query
using a moments sketch, we can update sliding windows using
turnstile semantics, subtracting the values from the oldest pane and
merging in the new one.

Figure 16 shows the runtime of the sliding window query using
both the moments sketch and MS2012. The cascade improves the
estimation time of the moments sketch by filtering out windows
that cannot pass the threshold. Faster moments sketch merge times
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Figure 17: Average error for low-precision moments
sketches after 100 thousand merges. Twenty bits of preci-
sion is sufficient to maintain accuracy for both datasets.

and the use of turnstile semantics then allow for 13× faster queries
than MS2012.

7.3 Low-precision storage
When implemented using double precision floating point, the mo-
ments sketch already has lower space overheads than alternative
summaries at the same accuracy (Figure 7 in Section 6.2.3). In set-
tings where space is heavily constrained, the moments sketch can
be compressed further by reducing the precision of the sketch con-
tents using randomized rounding.

As a preliminary proof-of-concept of this approach, we created
an encoder that compresses the double precision floating point
values in a moments sketch using reduced floating point precision,
quantizing the significand and removing unused bits in the expo-
nent. This low-precision representation has a negligible impact on
merge times since we can convert them to and from native double
precision using simple bit manipulation.

We then evaluate the encoding by constructing 100 thousand
pre-aggregated moments sketches, reducing their precision, and
then merging them and querying for quantiles on the aggregation.
Figure 17 illustrates how as we reduce the number of bits used,
the quality of the final estimate remains stable until we reach a
minimum threshold, after which further reduction decreases the
accuracy of the quantile estimates. On the milan dataset, a moments
sketch with k = 10 can be stored with 20 bits per value without
noticeably affecting our quantile estimates, representing a 3× space
reduction compared to standard double precision floating point.

8 CONCLUSION
In this paper, we show how to improve the performance of quantile
aggregation queries using statistical moments. Lowmerge overhead
allows the moments sketch to outperform comparably accurate ex-
isting summaries when queries aggregate more than 10 thousand
summaries. By making use of the method of moments and the max-
imum entropy principle, the moments sketch provides ϵavg ≤ 0.01
accuracy on real-world datasets, while the use of numeric optimiza-
tions and cascades keep query times at interactive latencies.
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