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Abstract 
The diagnosis of Mendelian disorders requires labor-intensive literature research. Our software system 
AMELIE (Automatic Mendelian Literature Evaluation) greatly automates this process. AMELIE parses 
hundreds of thousands of full text articles to find an underlying diagnosis to explain a patient’s phenotypes 
given the patient’s exome. AMELIE prioritizes patient candidate genes for their likelihood of causing the 
patient’s phenotypes. Diagnosis of singleton patients (without relatives’ exomes) is the most time-consuming 
scenario. AMELIE’s gene ranking method was tested on 215 singleton Mendelian patients with a clinical 
diagnosis. AMELIE ranked the causal gene among the top 2 in the majority (63%) of cases. Examining 
AMELIE’s top 10 genes, amounting to 8% of 124 candidate genes with rare functional variants per patient, 
results in diagnosis for 95% of cases. Strikingly, training only on gene pathogenicity knowledge from 2011 
leads to identical performance compared to training on current data. An accompanying analysis web portal has 
launched at AMELIE.stanford.edu. 
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Introduction 
Rare diseases, in aggregate, affect 6-8% of the world’s population1. Patients with Mendelian diseases have one 
or two genetic mutations in a single gene primarily responsible for their disease and phenotypes2–5. Roughly 
5,000 rare Mendelian diseases, each with a characteristic set of phenotypes, have been mapped to about 3,500 
genes to date6. To identify candidate causative genes, exome sequencing is often performed, to relatively high 
(currently 25-30%) diagnostic yield7–11. However, identifying the causal mutations in a patient’s exome to 
arrive at a diagnosis can be very time-consuming, with a typical exome requiring 40 to 100 hours of expert 
analysis time12. This is due to the fact that there are over 4 million variants in a typical human genome by 
comparison with a reference sequence13. Of those, 100-300 are missense or truncating variants that are present, 
if any, at very low frequency in databases of control individuals14–16. These variants are candidates for causing 
the patient’s disease. While in-silico pathogenicity scores17–22 keep improving, definitive diagnosis of a known 
Mendelian disorder is accomplished by matching the patient’s genotype and phenotype to previously described 
cases from the literature. A diagnostic article establishes a causal link between one of the patient’s mutated 
genes and the patient’s set of clinical phenotypes. 

Because manual literature research is very time-consuming, manually curated databases such as OMIM23, 
OrphaNet24, HGMD25,26, HPO27 and ClinVar28 attempt to capture unstructured knowledge from the literature 
and bring it into a more concise form. The Human Phenotype Ontology (HPO) project27 creates two such 
databases: HPO phenotype ontology, which describes human phenotypes in a structured form, and HPO gene-
phenotype annotations (here referred to as HPO-A), containing a list of previously described gene-phenotype 
relationships curated from OMIM and OrphaNet. Methods such as Phevor29, Phenomizer30 and others31–34 use 
these databases to prioritize a list of candidate genes for causality given a patient’s clinical phenotypes. 
Dependence on these methods requires continuous comprehensive manual curation, with users ultimately 
traversing from the ranking tool, through the curating database, in search of the relevant primary literature. 

Here, we introduce AMELIE (Automatic Mendelian Literature Evaluation), a method for ranking candidate 
causal genes directly from the primary literature. AMELIE first automatically analyzes the full text of all 
relevant papers to create a knowledgebase suitable for diagnosis of patients with suspected Mendelian diseases 
and then uses this database to automatically prioritize candidate causal genes given the patient’s phenotypes. 
We show that prioritizing candidate causal genes using AMELIE significantly outperforms existing gene 
ranking methods using a set of 215 clinically diagnosed singleton patients with Mendelian diseases. A web 
portal for literature based patient analysis has launched at AMELIE.stanford.edu. 

Results 
Knowledgebase construction 
We set out to automatically construct a knowledgebase that is suitable for diagnosing patients with Mendelian 
diseases from the primary literature. To achieve this, we use data from manually curated databases to train a 
natural language processing system, and apply the system to a comprehensive set of full text articles about 
Mendelian diseases. An outline of the knowledgebase construction is provided in Figure 1A. 
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Downloading titles and abstracts of articles from PubMed (Figure 1A, step 1) 

PubMed is a journal citation database of references to peer reviewed biomedical articles containing titles and 
abstracts of articles. We downloaded all 25,793,020 available titles and abstracts from PubMed. 

Identifying gene mentions in titles and abstracts 

Genes and their protein products are identified by various names in English text. Both the HUGO Gene 
Nomenclature Committee35 (HGNC) and the UniProt36 database maintain a list of gene and protein names. To 
identify mentions of human genes or protein products in the text, a list of 188,975 gene and protein names for 
21,346 distinct protein-coding Ensembl genes and 18,149 non-protein-coding genes (which are largely used as 
negative training examples for the classifiers described below) was compiled from these two sources. AMELIE 
identifies gene mentions in articles by matching words in the article against the list of gene and protein names 
and synonyms (Online Methods). 

Identifying phenotype mentions in titles and abstracts 

Human Phenotype Ontology27 (HPO) provides a standardized vocabulary of phenotypic abnormalities 
encountered in human genetic disease. Phenotypic abnormalities are stored with a unique identifier, a canonical 
name and an optional list of synonyms. Human Phenotype Ontology contains 11,639 distinct human 
phenotypes. To identify human phenotype mentions in text, a list of names and synonyms of human phenotypes 
from the Human Phenotype Ontology annotation was assembled comprising 29,182 phenotype names and 
synonyms. AMELIE identifies phenotype mentions by matching these phenotype names with word groups in 
English text (Online Methods). 

Document classification discovers articles about Mendelian diseases (step 2) 
PubMed contains titles and abstracts, but not the full text of articles. However, it is the full text that provides the 
definitive discussion and enumeration of genotypes and phenotypes used to arrive at a paper’s conclusions. 
AMELIE discovers articles relevant to Mendelian diseases using the article’s title and abstract, as well as gene 
and phenotype names discovered in the title and abstract, and then downloads the full text of relevant articles. 

We trained a document classifier using logistic regression37 featurized by TF-IDF-transformed words (a 
common transformation of word frequencies into numerical features, after replacing gene and phenotype 
mentions identified in the titles and abstracts by special tokens (Online Methods). The training set was based on 
all 51,637 positive articles cited in OMIM’s Allelic Variants section and in HGMD and 66,424 random negative 
articles from PubMed. Articles cited in OMIM and HGMD entries on causative genes for the 215 test patients 
(discussed below) were omitted from the training data. 5-fold cross-validation of the classifier returned an 
average precision of 98% and an average recall of 96%. The document classifier was applied to all 25,793,020 
titles and available abstracts downloaded from PubMed. Of those, 528,574 (over 10 times the size of the 
training set) were classified as relevant for Mendelian disease diagnostics. 

Downloading full text of relevant articles (step 3) 
Relevant documents returned from the document classifier were downloaded using PubMunch (Online 
Methods), resulting in full-text of 413,820 (78%) of all documents classified as relevant. From the full text of 
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these documents, topical genes (which are the gene(s) that are the “topic” of any given article on Mendelian 
diseases), phenotypes and modes of inheritance were extracted, as described next. 

Identifying genes and phenotypes in relevant articles’ full text (steps 4-5) 
Genes and phenotypes were identified in full text in the same way they were identified in titles and abstracts 
(above). A median of 58 gene mentions corresponding to 11 distinct Ensembl genes are identified in each 
article’s full text with a precision of 52%. A median of 12 phenotype mentions corresponding to 5 distinct 
phenotypes are identified in each article’s full text with a precision of 92% (Online Methods). 

Topical gene classification discovers topical genes in text (step 6) 
Many gene names mentioned in an article are not relevant for genetic diagnosis. To eliminate these, a “topical 
gene” classifier was trained to recognize genes that are mentioned in an article as causing a phenotype when 
mutated. For example, the gene NOTCH3 is the “topical gene” of the article “Truncating mutations in the last 
exon of NOTCH3 cause lateral meningocele syndrome”38. 

The topical gene classifier is a logistic regression classifier featurized by TF-IDF transformed words flanking 
all mentions of a gene in an article (Online Methods). The training set was based on 40,350 articles with topical 
genes that were cited in OMIM and HGMD. All OMIM and HGMD entries on causative genes for the 215 test 
patients (below) were omitted from the training data. The classifier identifies the topical gene with 91% 
precision and 83% recall. In total, one, two or more topical genes were extracted from 187,946, 23,308 and 
5,284 articles respectively.  

Linking topical genes to phenotypes 

For each article, the topical genes are linked to all the phenotypes mentioned in the article. This way we 
extracted 670,357 distinct gene-phenotype associations covering 12,295 distinct Ensembl genes. 

Inheritance mode extraction from articles 

AMELIE attempts to extract the inheritance mode from articles. Extracted inheritance modes are either 
dominant, recessive or unknown (where “recessive” or “dominant” refers to both autosomal and sex-linked 
inheritance modes). An inheritance mode was extracted from 49,780 (23%) of relevant articles with a topical 
gene (26,853 with dominant inheritance mode, 22,927 with recessive inheritance mode) at a precision of 98% 
(Online Methods). 

Patient test set 
For evaluation of AMELIE, 215 singleton patients from the Deciphering Developmental Diseases33 project 
were used (Online Methods). The Deciphering Developmental Diseases dataset includes HPO phenotypes (a 
median of 7 per patient) as well as exome data (VCFs) and the causal genes for each patient (1 per patient). 
Patient variants were annotated with semantic effect using ANNOVAR40 and with frequency information using 
ExAC15 and the 1000 Genomes Project13, which combine data from exome and genome sequencing studies 
from over 60,000 individuals. Rare missense, splice-site, frameshift, nonframeshift indel, stop-gain and stop-
loss variants were considered to be possibly pathogenic. Genes containing possibly pathogenic variants are 
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considered candidate genes. A median of 124 candidate genes were discovered per patient (Online Methods and 
Figure 1B). 

Evaluation 
As noted above, when training the relevant document classifier and the topical gene classifier described above, 
all articles about the causal genes in any of the 215 patients were removed from the training data.  

Phenotype matching calculates similarity of two sets of phenotypes 

We associated each phenotypic abnormality in the Human Phenotype Ontology with an information-theoretical 
score based on the number of genes associated with the phenotype in the knowledgebase we built (Figure 1A). 
Intuitively, the fewer genes are known to cause a phenotype, the higher the score associated with finding a 
patient mutated gene capable of explaining this phenotype. Two sets of phenotypes (e.g., one set of patient 
phenotypes and one set of topical gene phenotypes mentioned in an article) are assigned a phenotype match 
score based on the similarity of the sets of phenotypes and their phenotype scores (Figure 2; Online Methods 
provide the formal definitions). 

AMELIE ranks candidate causal genes 

AMELIE ranks all patient genes for their ability to explain the patient set of phenotypes. Its goal is to rank the 
causal gene as high as possible, to help minimize the time it then takes the human expert to investigate each of 
the potentially causal patient variants. Ranking a patient’s candidate genes is done from the list of relevant 
articles annotated with topical genes and phenotypes and possibly an inheritance mode. For each of the patient’s 
candidate genes, AMELIE identifies articles about the gene using the topical gene classifier (above). Each of 
these articles is matched with the patient’s phenotypes. All investigated articles are sorted by their phenotype 
match score. The patient’s candidate genes are then sorted by the highest-ranking article for each gene to 
provide the reader with an ordered list of possibly diagnostic articles (Figure 2; Online Methods). 

AMELIE outperforms curation dependent methods at ranking candidate causal genes 
OMIM23 (Online Mendelian Inheritance in Man) is a database of human genes and genetic disorders. 
OrphaNet24 is a database of rare diseases that includes contextual information, such as causal genes and clinical 
practice guidelines. Both are manually curated from the literature. The set of 215 patients was used to evaluate 
AMELIE against Phevor29 and Phenomizer30, both of which use HPO-A gene-phenotype annotations curated 
from OMIM and OrphaNet as a primary source of information about gene-phenotype links.  

For each patient, with a median of 124 candidate genes, AMELIE analyzed a median of 2,068 articles about 
these genes (Figure 1B). AMELIE ranks the causal gene as the very first gene to read on in 92 out of 215 cases 
(43%), and in the top 10 genes in 204 out of 215 cases (95%). Phenomizer and Phevor ranked the causal gene at 
the top in only 72 (33%) and 66 (31%) out of 215 cases, respectively. Similarly, Phenomizer and Phevor ranked 
the causal gene in the top 10 in only 186 (87%) and 181 (84%) out of 215 cases, respectively (Figure 3). 
AMELIE performs significantly better than Phenomizer and Phevor (p=8.5*10-4 and p=1.7*10-5, respectively, 
one-sided Wilcoxon signed rank test). 

  

.CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/171322doi: bioRxiv preprint first posted online Aug. 2, 2017; 

http://dx.doi.org/10.1101/171322
http://creativecommons.org/licenses/by-nc/4.0/


	  

6 

Performance of AMELIE is unchanged when training only on 5-year-old data 
Supervised machine learning methods such as those used by AMELIE rely on a minimum number of labeled 
training data points to generalize well. Additional data are not needed to improve performance. Here we show 
that AMELIE generalizes (performs) well already on knowledge available in 2011. 

To execute this experiment, the relevant document classifier and the topical gene classifier (above) were both 
trained only on PubMed titles and abstracts from 2011 or earlier (Online Methods). Impressively, the results on 
our 215 cases are virtually identical to AMELIE trained on 2016 data (Figure 3). 

AMELIE holds over 3 times as many gene-phenotype relationships as HPO-A 
The value of a database that curates gene-phenotype relationships is proportional to the number of gene-
phenotype relationships that it contains. Each missing gene-phenotype relationship makes it harder for 
clinicians and automated patient-solving algorithms alike to correctly associate the causal gene with the 
patient’s disease. HPO-A (build 115) contains an estimated 86,873 true-positive gene-phenotype annotations. 
Of those, AMELIE recovers 54,371 (68%). In addition, AMELIE extracted an estimated 211,894 true positive 
gene-phenotype relationships that are not present in the HPO annotations, making it 3.065 times larger than 
HPO-A (Online Methods). 

Web interface for AMELIE enables patient analysis based on latest literature 
A web portal that allows the analysis of patient cases suspected to have a Mendelian disorder utilizing the latest 
literature has launched at AMELIE.stanford.edu. The portal takes as input a list of genes containing rare 
variants in the patient and a list of HPO phenotypes observed in the patient. AMELIE article ranking as 
described above is then performed and a list of genes and top papers is displayed. Clinicians can require certain 
phenotypes to occur in the article e.g., the clinician could require “hypertrichosis” to show only articles that 
mention hypertrichosis or any more specific term (child node) in the Human Phenotype Ontology. 

Discussion 
We present AMELIE, a method for ranking candidate causal genes and supporting articles in patients with 
suspected Mendelian disorders. We show that AMELIE ranks the causal gene in the top two in the majority of 
patients, and within the top 10 genes in 95% of real patient cases. This result suggests that clinicians could 
rapidly arrive at diagnoses for most diagnosable patients by investigating just the first 10 (8% of the median 
124) genes using the relevant literature provided by AMELIE for every incoming patient. 

With 5,000 diagnosable Mendelian diseases, caused by roughly 3,500 different genes, and manifesting in 
different subsets of over 10,000 documented phenotypes, manual patient diagnosis from the primary literature is 
very labor intensive. Patient phenotypes must be consulted to arrive at a differential diagnosis. One must then 
read about the different genes known to be involved in these different diseases. Singleton patients may present 
between 100-300 plausible candidate genes from their exome alone. Memorizing non-obvious phenotype and 
gene synonyms (e.g., MLL=KMT2A) makes the task of diagnosis against current literature even harder. 
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Manually curated databases like OMIM, OrphaNet and HGMD take a step towards alleviating clinician burden 
by attempting to summarize the current literature. However, manual curation is growing ever more challenging 
as the literature about Mendelian diseases is increasing at an accelerating rate. Every two years between 2004 
and 2015, AMELIE discovered 10% more relevant papers to process. Even more demanding, every single year 
between 2004 and 2015, AMELIE found nearly 10% more gene-phenotype relationships to curate. 

Existing gene- and disease-ranking methods such as Phenomizer and Phevor point clinicians to possibly 
valuable entries in manually curated databases. To diagnose patients, clinicians will then browse articles linked 
from these entries in manually curated databases. AMELIE departs from this paradigm. Instead, we propose to 
automatically pre-process all Mendelian literature to speed up patient diagnosis. By ranking papers directly, 
AMELIE further accelerates diagnosis. Due to more comprehensive literature analysis (over 2,000 full text 
articles are analyzed for every patient), AMELIE outperforms these approaches. For example, we manually 
searched OMIM for the titles of 50 distinct articles that were ranked at the top for the causal genes of 50 
random patients. Only 15 out of these 50 articles (30%) are cited in OMIM, as determined by systematic Google 
searches of the site omim.org on January 30, 2017. 

AMELIE’s strongest point is perhaps the fact that even when it uses only supervision data from 2011 or earlier, 
it performs as well as it performs from training on the most current literature. In other words, AMELIE’s 
performance is essentially independent of future manual curation efforts, an important step on the path to 
offering continuous automated knowledge extraction.  

We publish a website at AMELIE.stanford.edu that allows clinicians to interrogate their patients against the 
latest biomedical literature. Genome-wide data are challenging: no clinician can possibly be expected to 
memorize the impact of mutations in thousands of different genes. Manual analysis is labor-intensive, slow, 
costly and irreproducible. Automating as much as possible of this whole process promises to potentiate rapid, 
affordable, reproducible and accessible clinical genome-wide diagnosis. As such, AMELIE provides an 
important step on the road to integrating personal genomics into standard clinical practice.  
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Figure 1: AMELIE (Automatic Mendelian Literature Evaluation) Overview. (A) Knowledgebase creation. 
AMELIE (1) parses all 25.7 million PubMed abstracts, (2) trains a machine learning classifier to detect papers 
relevant to Mendelian diseases, (3) downloads the full texts of these articles from multiple publishers, identifies 
(4) gene and (5) phenotype mentions in these texts, and (6) trains a second machine learning classifier to detect 
which genes may cause which phenotypes, when mutated. The end result (right) is a knowledgebase of 670,357 

A 

B 
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phenotypes associated with 12,295 distinct genes. (B) Candidate gene ranking. AMELIE evaluates each paper 
in relation to every patient candidate gene with respect to its ability to explain the set of patient phenotypes (see 
Figure 2). AMELIE reads over 2,000 papers per case, and ranks the causal gene, along with supporting 
literature, for 215 real patients, as first or second in over 60% of cases (see Figure 3). A median of 122 genes 
are ranked below the causal gene, greatly accelerating the speed at which a clinician using the system is able to 
diagnose each case.  
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Figure 2 

 
Figure 2: Using machine learning to scan the primary literature in search of a patient candidate gene that 
best explains the patient set of phenotypes. AMELIE evaluates every paper it has found that ties any of the 
patient candidate genes to any clinical phenotype/s. AMELIE sums the amount of information acquired by 
learning from the paper such that the candidate gene can explain one or more of the patient phenotypes (Online 
Methods). All papers about all candidate genes are scored in this way, and all genes are ranked using their best 
scoring paper. For each of 215 patients with Mendelian diseases from the Deciphering Developmental 
Disorders study39, AMELIE analyzed a median of 2,068 full text articles about 124 (median) patient genes in an 
attempt to explain all 7 (median) patient phenotypes.  
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Figure 3 

 
Figure 3: AMELIE patient causal gene ranking outperforms methods based on manually curated 
databases, even when training only on 2011 knowledge. For each of four methods, the graph shows the 
fraction of 215 patients with Mendelian diseases, obtained from the Deciphering Developmental Disorders 
study39, where the method places the causal gene in the rank order 1, 1-2, 1-3, 1-5 or 1-10 (left to right). 
Methods: (Blue, leftmost) AMELIE trained on 2016 data. (Red) AMELIE trained on 2011 data. (Green) Phevor 
and (Purple, rightmost) Phenomizer, both trained on manually curated OMIM and OrphaNet. Weak supervision 
using 2011 knowledge (never about the causal genes) is adequate to train AMELIE to be the best performer. 
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Online methods 
Knowledgebase construction 
Downloading titles and abstracts from PubMed (Figure 1A, step 1) 

Titles and abstracts from PubMed were obtained using PubMunch (https://github.com/maximilianh/pubMunch).  

Identifying gene mentions in titles and abstracts 
To identify mentions of human genes or protein products in the text, a list of human gene and protein names 
was assembled using HGNC35 symbols, HGNC synonyms, UniProt36 gene names and UniProt protein names. 
Gene mentions are identified in text by matching word groups in the article with gene names from the list of 
gene and protein names. 

To estimate the precision (the fraction of retrieved data points that are true) of the gene identifier, 50 random 
gene mentions were taken from all downloaded full-text articles and the number of correctly identified genes 
was counted. A mention was defined as correct if the word group referred to a gene or protein product and the 
assigned Ensembl gene identifier referred to the mentioned gene. 

Identifying phenotype mentions in titles and abstracts 

To identify human phenotype mentions in the text, a list of names and synonyms of human phenotypes from the 
Human Phenotype Ontology27 annotation build 103 was assembled.  

Phenotype mentions are identified by matching word groups in the article with phenotype names from the 
Human Phenotype Ontology. If a word group matches, it is mapped to the appropriate Human Phenotype 
Ontology term. 

To estimate the precision of the phenotype identifier, 50 random phenotype mentions were taken from all 
downloaded full-text articles and the number of correctly identified phenotypes was counted. A mention was 
defined as correct if the word group occurred referred to a phenotype and the HPO ID referred to the mentioned 
phenotype. 

Document classification discovers articles about Mendelian diseases (step 2) 
To automatically identify articles that are relevant for diagnosing Mendelian diseases, a training set of positive 
abstracts was created from two existing databases about human mutations. HGMD42 (Human Gene Mutation 
Database) compiles information on mutations that cause human diseases. Its entries contain a gene, the exact 
mutation, its pathogenicity status and the PubMed ID of the article describing the mutation. OMIM23 is a 
database of Mendelian diseases and genes, as defined in the results section.  

The raw text of titles and abstracts was split into sentences and words as described above. Gene and phenotype 
mentions were identified as described above. All gene mentions in title and abstract were replaced by a token 
“XGENE” and all phenotype mention in title and abstract were replaced by a token “XPHENO”. All words in 
the title were prefixed with the characters “TITLE_” and all words in the abstract were prefixed with the words 
“ABSTRACT_”. 
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Each document was transformed into a feature vector using the scikit-learn43 0.17.1 CountVectorizer analyzer 
“word”, an n-gram range of exactly one word and default parameters otherwise. The count-vectorized data was 
transformed into a TF-IDF feature vector using the scikit-learn43 version 0.17.1 TfidfTransformer with default 
parameters. A scikit-learn43 version 0.17.1 Logistic Regression classifier was trained on the TF-IDF feature 
vector with L2 penalty, a maximum of 1000 iterations and default parameters otherwise. 

A TF-IDF transformation treats each document as an unordered bag of words. The document is transformed 
into a feature vector by assigning each word the scalar product of two statistics: the term frequency (TF) of the 
word and the inverse document frequency (IDF) of the word. The term frequency tf(w, d) of a word w in a 
document d is defined to be the number of occurrences of w in d. The inverse document frequency of a word w 
in a document d is defined as 

𝑖𝑑𝑓 𝑤, 𝑑 = 𝑙𝑜𝑔
1 + 𝑛-

1 + 𝑑𝑓(𝑤) + 1, 

where nd is the total number of documents and df(w) is the number of documents that contain the word w. (See 
also http://scikit-learn.org/stable/modules/feature_extraction.html - text-feature-extraction). Then 

𝑡𝑓𝑖𝑑𝑓 𝑤, 𝑑 = 𝑡𝑓 𝑤, 𝑑 ×𝑖𝑑𝑓 𝑤, 𝑑 . 

This transformation is applied to each word in a document d and inserted in the document’s specific feature 
vector, which is subsequently used by a machine learning model such as the logistic regression models used 
here. 

The document classifier was subsequently run over all titles and abstracts downloaded from PubMed and 
PubMed IDs for relevant articles were returned. 

Downloading full text of relevant articles (step 3)  

Relevant documents returned from the document classifier were downloaded using PubMunch. Downloaded 
articles in PDF format were converted to text using pdftotext version 0.26.5 (https://poppler.freedesktop.org/). 
From the full text of these documents, topical genes, phenotypes and disease inheritance modes were extracted. 

Identifying genes and phenotypes in relevant articles’ full text (steps 4-5) 
Genes and phenotypes were identified in full text in the same way they were identified in titles and abstracts as 
described above. 

Topical gene classification discovers topical genes in text (step 6) 
To identify which genes are causing human phenotypes when mutated, a “topical gene” classifier was trained. 
The topical gene classifier takes as input all gene mentions from the article’s full text (which are discovered as 
described above) and identifies which gene object mentioned in the article is causing phenotypes when mutated.  

To construct the training set, for articles cited in the OMIM Allelic Variants sections, the topical gene in each 
article is the OMIM gene entry from which the article is cited. For articles cited in HGMD, the topical gene is 
the gene deposited in HGMD. All OMIM and HGMD entries on causative genes for the 215 test patients were 
omitted from the labeled data set. The labeled data set contains 43,228 positive examples of topical genes from 
40,350 articles. The negative set consists of all gene objects mentioned in an article that are not the topical gene 
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and consists of 569,747 negative training examples. The whole training set was split into 28,262 (roughly 70%) 
articles used for training (“training set”), 4,017 (10%) articles for running evaluation and improvement of the 
classifier (“development set”), and 8,071 (20%) articles for final performance testing (“test set”).  

The classifier is then trained on the following features: 

•   Number of mentions of the gene in the title 

•   Number of mentions of the gene in the abstract 

•   Number of mentions of the gene in the full text 

•   TF-IDF-transformed word counts (defined above) in 5-word-windows around all gene mentions for the 
gene in question 

A scikit-learn43 0.17.1 logistic regression classifier with default parameters is subsequently trained on these 
features, and the classifier is applied to all gene objects in all downloaded articles and all PubMed titles and 
abstracts. Topical gene mentions from PubMed title/abstracts and full text are subsequently combined for each 
relevant article. Articles in which more than 10 topical genes were identified were omitted from the knowledge 
base. Precision (the fraction of retrieved data points that are true) and recall (the fraction of all true data points 
that were retrieved) of the classifier were determined by running the classifier on the test set. 

Linking topical genes to phenotypes 
AMELIE gene-phenotype extractions were compared with gene-phenotype extractions curated by HPO build 
115 (the latest build available in February 2017), after canonicalization (see forth) of both sets. Phenotypic 
abnormalities in HPO are structured as a directed acyclic graph (DAG) with a single root. “Canonicalization” of 
a set of phenotypic abnormalities in the HPO ontology refers to the following process: a set of phenotypic 
abnormalities (i.e., descendants of the node “Phenotypic Abnormality”, HP:0000118) is augmented by adding 
all its ancestors up to and including “Phenotypic Abnormality”. A canonicalized set of gene-phenotype 
relationships refers to a set of gene-phenotype relationships where each gene-phenotype link is augmented by 
gene-phenotype links for all ancestors of the phenotype up to “Phenotypic Abnormality”. E.g., if the original set 
of gene-phenotype links includes “KMT2A – Elbow Hypertrichosis”, then the canonicalized set of gene-
phenotype links includes “KMT2A – Hypertrichosis” etc. up to “KMT2A – Phenotypic Abnormality”.  

Inheritance mode extraction from articles  

For each article, AMELIE attempts to extract mentioned inheritance mode(s). If the title and abstract of an 
article contain only words indicating that the described disease(s) are inherited in a dominant fashion 
(“heterozygous”, “heterozygote”, “heterozygosity”, “dominant”, “dominantly”, “autosomal-dominant”), then 
the article is assumed to describe a dominantly inherited disease. If the title and abstract of an article contain 
only words indicating that the described disease(s) are inherited in a recessive fashion (“homozygous”, 
“homozygote”, “homozygosity”, “recessive”, “recessively”, “heteroallelic”, “autosomal-recessive”, “biallelic”, 
“compound heterozygous”), then the article is assumed to describe a recessively inherited disease. If the 
inheritance mode cannot be uniquely identified from title and abstract using this method, the inheritance mode 
described in the article is extracted as unknown. 
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An analysis of 50 random articles about Mendelian diseases with an extracted inheritance mode revealed that 49 
out of 50 were assigned correctly (precision: 98%). 

Patient test set 
VCF files of patients submitted to the Deciphering Developmental Disorders39,44,45 (DDD) project were 
downloaded from the European Genome-Phenome Archive46 (EGA). The EGA accession numbers were 
EGAD00001001848, EGAD00001001977, EGAD00001002748, EGAD00001001355, EGAD00001001413 
and EGAD00001001114. All patients with a single-gene diagnosis, also found in their VCF, that was not due to 
a structural variant and for which the causative gene was not a novel discovery of the DDD project were 
selected. From any diagnosed set of siblings, a single diagnosed sibling was selected at random. This resulted in 
an intermediate set of 223 diagnoses. 

Variant filtering defines the candidate gene list for each patient 
ANNOVAR40 v527 was used to annotate variants with predicted effect on protein coding genes using gene 
isoforms from the Ensembl gene set version 75 for the hg19/GRCh37 assembly of the human genome40.  All 
coding isoforms were used where the transcript start and end are marked as complete and the coding span is a 
multiple of three. Patient variants are annotated with frequency information from ExAC15 and the 1000 
genomes project47, as previously described in 48. 

To obtain a candidate gene list per patient, variants fulfilling the following criteria are assumed to be possibly 
pathogenic: (a) The variant is in the coding region of a gene or in a canonical splice site and not synonymous. 
(b) The overall allele frequency in both the ExAC and the 1000 Genomes control populations does not exceed 
0.5% and the homozygote count is not greater than 1. (c) Variant calls with inconsistent ALT variant calls (2 or 
more lines in the same VCF with different alternative allele calls) and variant calls with inconsistent REF calls 
(2 or more lines in the same VCF with different reference allele calls) are removed. (d) For transcripts with a 
single heterozygous variant, the frequency of the variant in ExAC and the 1000 Genomes Project has to be 0.1% 
or less and the allele count has to be 3 or less. Using this filtering scheme, 8/223 (3.5%) of diagnoses were 
flagged where the reported causal variant/s occur/s in a significant number of presumably non-affected 
individuals in ExAC. The final test set we used consists of the remaining 215 patients. 

Evaluation 
Phenotype matching calculates similarity of two sets of phenotypes 

Each phenotype node x in the Human Phenotype Ontology that is a descendant of HP:0000118 (“Phenotypic 
Abnormality”) is associated with an information-theoretic score. The score of x is calculated as  

𝑠𝑐𝑜𝑟𝑒 𝑥 = −𝑙𝑜𝑔9
𝑔:
𝑛;

+ 𝑙𝑜𝑔9
𝑔< :

𝑛;
, 

where gx is the number of genes we have learned can cause x, ng is the number of genes we have learned can 
cause any HPO phenotype and gp(x) is the number of genes we have learned can cause all parents of x in the 
HPO directed acyclic graph (DAG). By virtue of the HPO DAG structure design, when a gene causes some 
phenotype x, it also causes all ancestors of x up to Phenotypic Abnormality. E.g., if mutations in KMT2A cause 
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“elbow hypertrichosis”, then mutations in KMT2A also cause “hypertrichosis”, “abnormal hair quantity”, 
“abnormality of the hair”, “abnormality of skin adnexa morphology”, “abnormality of the integument”, and the 
most general term, “phenotypic abnormality”. 

To calculate the match score between two sets of phenotypes A and B (e.g., the match score between a patient’s 
set of phenotypes A and an article’s set of phenotypes B), let A’ = A + all ancestors of nodes in A and similarly 
B’ = B + all ancestors of nodes in B. Let C = intersection of A’ and B’.  

The match score of the sets of phenotypes A and B is defined as  

𝑚𝑎𝑡𝑐ℎ 𝐴, 𝐵 = 𝑠𝑐𝑜𝑟𝑒(𝑥):∈C . 

AMELIE ranks candidate causal genes 
The output of the automated ranking system is the list of patient mutated genes, ranked by their likelihood of 
individually causing the case’s phenotype. To generate this gene list, all articles about one of the patient’s genes 
carrying rare non-synonymous variants are examined. An article A is assumed to be “about” a gene G if the 
gene G is identified as a “topical gene” from article A by the topical gene classifier (above). If a gene contains a 
single heterozygous variant, but the article describes a recessive disease, the article is omitted from the analysis. 
Each of the examined articles receives a phenotype match score that is calculated by matching all the 
phenotypes associated with the topical gene in the article with the case’s phenotypes using the match formula 
described above. 

The output of the solver is a list of genes associated with articles, sorted by the phenotype match score of the 
highest ranked article for each gene. In rare cases, multiple articles (for the same or different genes) receive 
equal match scores. To break tied match scores, additional sorting criteria are applied: 

The RVIS49 score is a measure of a gene’s intolerance to nonsynonymous variants derived from population 
frequencies of synonymous and nonsynonymous variants in a gene. Genes with low RVIS scores are likely to 
be intolerant to nonsynonymous variants. Genes with high RVIS score are more tolerant to such variants. 

To break rare ties between articles’ phenotypic match scores, the following additional sorting criteria are 
applied: (2) the RVIS score of the mutated gene (lower RVIS scores are ranked higher) (3) the publication year 
and month of the article (newer articles are ranked higher) and (4) by the unique PubMed ID of the article. 

AMELIE outperforms curation dependent methods at ranking candidate causal genes 
Comparison to Phevor 
The output of Phevor29 Version 2 for each of the 215 patients was obtained through Phevor’s website 
(http://weatherby.genetics.utah.edu/phevor2/index.html). The output of Phevor contains a list of ranked genes, 
enabling direct comparison with AMELIE. The Phevor gene rank was calculated as the number of candidate 
causative genes ranked before the causative gene plus 1. 

Comparison to Phenomizer 
The output of Phenomizer30 for each of the 215 patients was obtained through Phenomizer’s website 
(http://compbio.charite.de/phenomizer/). The output of Phenomizer consists of a list of ranked diseases along 
with the set of genes known to be associated with each disease. In contrast, AMELIE’s output consists of a list 
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of genes along with the articles that explain why mutations in this gene could be causing the patient’s 
phenotype. 

To compare the output of Phenomizer with AMELIE’s output, the rank of any gene from Phenomizer’s output 
was calculated as follows: (1) Take the patient’s disease as the highest Phenomizer-ranked disease associated 
with the causative gene. (2) Take the set of all genes associated with a disease at higher Phenomizer rank than 
the patient’s disease. (3) Let x be the number of unique genes found in step (2). (4) The rank of the causative 
gene equals x + 1. 

Performance of AMELIE is unchanged when training only on 5-year-old data 
The publication year of an article was taken from the publication date of the original article, which is saved in 
PubMed. The relevant document classifier and the topical gene classifier were trained on PubMed titles and 
abstracts from 2011 or earlier. Articles for which the publication date was not deposited in PubMed were 
omitted from the training data. The training data for the relevant document classifier consisted of 54,537 
negative examples and 40,153 positive examples. This is 22% fewer positive training data points compared to 
the full training set, which contained 51,637 positive examples. The training data for the topical gene classifier 
consisted of 21,634 positive examples and 263,780 negative examples. This is 29% fewer positive training data 
points compared to the full training set, which contained 30,291 positive training examples.  

AMELIE holds over 3 times as many gene-phenotype relationships as HPO-A 
HGNC gene symbols in the HPO build 115 were converted to gene Ensembl IDs for comparison with AMELIE. 
The number of gene-phenotypic abnormality links in HPO build 115 is 103,617. Of those, 54,371 were also in 
the canonicalized set (defined above) of gene-phenotype relationships extracted by AMELIE. Of the remaining 
49,246 links, 50 random gene-phenotype links were selected. 33 (66%) out of those were supported by the 
scientific literature about Mendelian diseases and/or OMIM disease entries for Mendelian diseases. 2 of 50 
(4%) were phenotypes linked through cancer, which AMELIE does not attempt to extract. We could not find 
support for 30% of gene-phenotype links in HPO build 115. Thus, we estimate the number of true gene-
phenotype links for Mendelian diseases that AMELIE is missing to be 66% of 49,246, or 32,502. The number 
of gene-phenotype links extracted by AMELIE that are not in the canonicalized version of HPO build 115 is 
588,595. By sampling 50 random gene-phenotype associations out of those, 18/50 (36%) were determined to be 
correct extractions. The estimated number of true extractions in AMELIE that are not in the canonicalized 
version of HPO build 115 is therefore 588,595 * 36% = 211,894.  
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