Finding Heavily-Weighted Features with the Weight-Median Sketch
Kai Sheng Tai, Vatsal Sharan, Peter Bailis, Gregory Valiant
Stanford University

Background

Sketches
- Sketches are useful for approximate query processing under memory constraints
- Examples: top-k frequent items, quantiles, # of distinct items

Memory-Constrained Online Learning
- ML on mobile devices, wearables, appliances: update models online on locally-observed data
- Examples: language modeling on phones, human activity classifiers on wearables

Problems

High-Dimensional Feature Spaces
- Memory usage can increase over time as new features are observed
- Example: Spam classifier on text stream continually observes new n-grams
- Over time, models can grow to exceed memory constraints

Loss of Interpretability
- Feature hashing fixes the feature dimension, but at cost of interpretability
- Difficult to debug and perform analyses on learned weights

The Weight-Median Sketch (WM-Sketch)

Sketched Linear Classifier
- Learns a compressed classifier within a fixed space budget
- Input feature vectors x_t compressed via random projection

Efficient Weight Recovery
- Supports efficient estimation of high-magnitude weights
- Identify most influential features in model

Algorithm

Random Projection
- Sparse Count-Sketch projection R
- Efficiently implemented via hashing

Updates
- Project example $x_t \mapsto Rx_t$
- Update sketch state using gradient descent

Estimating weight of feature i
- Take median of buckets that feature i hashes to (+ random sign flips)
- Maintain heap of top-K weights

Theoretical Guarantees

Theorem (informal) Given feature dimension d, failure probability δ, $\epsilon > 0$, set sketch size $k = O\left(\epsilon^{-1} \log^4 (d/\delta)\right)$ and sketch depth $s = O\left(\epsilon^{-2} \log^2 (d/\delta)\right)$. Then:

$$\|w_\star - \hat{w}_\text{est}\|_\infty \leq \epsilon \|w_\star\|_1,$$

where w_\star is the optimal weight vector and \hat{w}_est are the recovered weights.

Remark. Sketch size has only polylogarithmic dependence on d!

Evaluation

- Lower error in weight recovery than baselines
- Comparable classification accuracy with best baseline methods
- Consistent improvement in classification accuracy vs. feature hashing

Applications

- Enables streaming analyses that can be formulated as classification tasks
- Online feature selection
- Streaming data explanation
- Detecting large relative differences between data streams
- Streaming pointwise mutual information for finding highly-correlated pairs

Paper: arXiv:1711.02305