DAWN: Infrastructure for Usable Machine Learning

Peter Bailis, Kunle Olukotun, Chris Ré, Matei Zaharia
It’s the Golden Age of Data*

Incredible advances in image recognition, natural language processing, planning, info retrieval

Society-scale impact: autonomous vehicles, personalized medicine, human trafficking

No end in sight for advances in ML

*for the best-funded, best-trained engineering teams
Building ML Products is Too Hard

Major successes (e.g., AlphaGo, ImageNet) require hundreds to thousands of engineers.

Huge effort in data preparation, model tuning, experimentation, and productionizing.

Domain experts cannot easily or cheaply build ML products.
“Only a fraction of real-world ML systems is composed of ML code”
The DAWN Question

What if *anyone* with domain expertise could build their own production-quality ML products?

- Without a PhD in machine learning
- Without being an expert in systems
- Without understanding the latest hardware

It’s happened before
It’s happened before: Search

Before: Decades of research on information retrieval, indexes, ranking, etc

After: any developer can add search to an application by linking a library (e.g. Solr, Lucene); everyone (i.e., non-expert users) uses search
It’s happened before: SQL

Before: raw access to disk, manual layout of records, network databases (CODASYL)

After: SQL forms basis for transactional engines, data warehousing, business intelligence tools

Key idea: end-to-end systems that tackle the barriers to access & production use
The DAWN Stack

Data Acquisition
- Snorkel
- DeepDive

Feature Engineering
- MacroBase (Streaming Data)

Model Training
- ModelSnap
- NoScope (Video)
- AutoRec, SimDex (Recommendation)
- Mulligan (SQL+graph+ML)

Productionizing
- ModelQA

Hardware
- CPU
- GPU
- FPGA
- Cluster
- Mobile

New Hardware:
- FuzzyBit
- Plasticine CGRA

End-to-End Compilers: Weld, Delite
Example: MacroBase for Continuous Analytics

End-to-end system to **prioritize user attention**

multi-dimensional data streams → MacroBase → anomalies & explanations
<table>
<thead>
<tr>
<th>record_id</th>
<th>user_id</th>
<th>state</th>
<th>hw_make</th>
<th>hw_model</th>
<th>firmware_version</th>
<th>app_version</th>
<th>avg_temp</th>
<th>battery_drain</th>
<th>trip_time</th>
</tr>
</thead>
<tbody>
<tr>
<td>131920</td>
<td>49e36c5b031141dd8cf240f7</td>
<td>CO</td>
<td>Lenovo</td>
<td>Lenovo_K910L</td>
<td>4.4.2</td>
<td>v21</td>
<td>79.252124</td>
<td>0.205834</td>
<td>40.910145</td>
</tr>
<tr>
<td>131921</td>
<td>a670eab2bc6d4e5991ea4269</td>
<td>WV</td>
<td>TCT (Alcatel)</td>
<td>4009A</td>
<td>7.1.1</td>
<td>v36</td>
<td>72.136380</td>
<td>0.184874</td>
<td>47.253076</td>
</tr>
<tr>
<td>131922</td>
<td>247c64e48a8743829c5f7199</td>
<td>UT</td>
<td>TCT (Alcatel)</td>
<td>4009A</td>
<td>7.1.1</td>
<td>v31</td>
<td>77.300103</td>
<td>0.230015</td>
<td>25.342140</td>
</tr>
<tr>
<td>131924</td>
<td>6bd9af7242ca480a96d75d0d</td>
<td>OH</td>
<td>HTC</td>
<td>HTC_M10u</td>
<td>6.0.1</td>
<td>v38</td>
<td>70.937014</td>
<td>0.454293</td>
<td>38.661161</td>
</tr>
<tr>
<td>131926</td>
<td>d449b12dcb6346d7af1021de</td>
<td>HI</td>
<td>HTC</td>
<td>HTC_Wildfire_S_A510b</td>
<td>6.0</td>
<td>v46</td>
<td>75.436764</td>
<td>0.151338</td>
<td>17.785555</td>
</tr>
<tr>
<td>131927</td>
<td>fff8907a14e4a50ab76bd46</td>
<td>HI</td>
<td>bq</td>
<td>Aquaris_E4.5</td>
<td>4.4.1</td>
<td>v38</td>
<td>70.208187</td>
<td>0.286005</td>
<td>60.443799</td>
</tr>
<tr>
<td>131929</td>
<td>8226cd65bb1f4d61a66cf4555</td>
<td>MI</td>
<td>TCT (Alcatel)</td>
<td>ALCATEL_one_touch_97</td>
<td>6.0.1</td>
<td>v35</td>
<td>73.113370</td>
<td>0.249834</td>
<td>16.881133</td>
</tr>
<tr>
<td>131930</td>
<td>30e726fadec6744b2ace2d76b</td>
<td>LA</td>
<td>TCT (Alcatel)</td>
<td>ALCATEL_ONE_TOUCH_60</td>
<td>5.0</td>
<td>v40</td>
<td>77.918077</td>
<td>0.405417</td>
<td>51.163642</td>
</tr>
<tr>
<td>131931</td>
<td>569f35993da246f4af83c2e</td>
<td>FL</td>
<td>Lava</td>
<td>S1</td>
<td>6.0.1</td>
<td>v44</td>
<td>76.558080</td>
<td>0.416760</td>
<td>42.252460</td>
</tr>
<tr>
<td>131932</td>
<td>9d2db241316c43378b8ec14c</td>
<td>AL</td>
<td>LGE</td>
<td>LG-D724</td>
<td>7.0</td>
<td>v29</td>
<td>76.760340</td>
<td>0.334446</td>
<td>37.922632</td>
</tr>
<tr>
<td>131933</td>
<td>4841c0da64e4648878461c</td>
<td>LA</td>
<td>Hisense</td>
<td>LED42K680X3DU</td>
<td>4.4.4</td>
<td>v49</td>
<td>77.138769</td>
<td>0.409485</td>
<td>23.345804</td>
</tr>
<tr>
<td>131934</td>
<td>d375d5a0e10d46cf9b91e343</td>
<td>MI</td>
<td>Techno</td>
<td>TECNO_P5S</td>
<td>6.0</td>
<td>v31</td>
<td>70.115019</td>
<td>0.179464</td>
<td>45.051123</td>
</tr>
<tr>
<td>131936</td>
<td>e4835a64d96e4e89997ce027</td>
<td>WI</td>
<td>ZTE</td>
<td>Z828</td>
<td>6.0.1</td>
<td>v35</td>
<td>71.615570</td>
<td>0.396389</td>
<td>47.662474</td>
</tr>
<tr>
<td>131937</td>
<td>cf00ae2105bb4e3c43b4364b2</td>
<td>FL</td>
<td>Spice</td>
<td>Spice_Mi-498H</td>
<td>5.0</td>
<td>v42</td>
<td>72.045184</td>
<td>0.327405</td>
<td>45.099422</td>
</tr>
<tr>
<td>131939</td>
<td>c94d264a846149f0f851c28e</td>
<td>RI</td>
<td>Infocus</td>
<td>InFocus_M320u</td>
<td>4.4.1</td>
<td>v49</td>
<td>73.543359</td>
<td>0.224504</td>
<td>19.069803</td>
</tr>
<tr>
<td>131940</td>
<td>c3c829d7ab5a4d09b52afe21</td>
<td>MI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131943</td>
<td>4e4566143b144be1809ad4d9</td>
<td>RI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131944</td>
<td>00e8ff83606b496392bedd49</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131946</td>
<td>00e8ff83606b496392bedd49</td>
<td>OK</td>
<td>LGE</td>
<td>LS670</td>
<td>4.0.4</td>
<td>v30</td>
<td>78.186519</td>
<td>0.381604</td>
<td>27.601968</td>
</tr>
<tr>
<td>131947</td>
<td>7a4bc456a54d20b1119d42</td>
<td>NV</td>
<td>Oppo</td>
<td>F1f</td>
<td>4.3.1</td>
<td>v38</td>
<td>77.434095</td>
<td>0.436364</td>
<td>40.869723</td>
</tr>
<tr>
<td>131948</td>
<td>c3c829d7ab5a4d09b52afe21</td>
<td>GA</td>
<td>Huawei</td>
<td>HUAWEI_Y320-U151</td>
<td>4.4.3</td>
<td>v42</td>
<td>77.715329</td>
<td>0.281726</td>
<td>23.077248</td>
</tr>
<tr>
<td>131949</td>
<td>2b0ac33a91f49bb6aa70cbe5</td>
<td>MO</td>
<td>ZTE</td>
<td>KPN_Smart_300</td>
<td>4.4.4</td>
<td>v39</td>
<td>75.368614</td>
<td>0.371224</td>
<td>44.295975</td>
</tr>
<tr>
<td>131950</td>
<td>5aab0148ea794d2eeacfc9a27</td>
<td>NV</td>
<td>Ketablet</td>
<td>TR10CS1</td>
<td>5.0</td>
<td>v49</td>
<td>79.459844</td>
<td>0.491424</td>
<td>37.653744</td>
</tr>
</tbody>
</table>

Too much data for manual inspection
Even harder when data is streaming
Database Configuration

Database URL: postgres
Base query: SELECT * from sensor_data;
Connected to postgres database!

Schema Information and Selection

<table>
<thead>
<tr>
<th>Clustering Attribute?</th>
<th>Target Metric? Lo/Hi</th>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td></td>
<td>reading_id</td>
<td>int8</td>
</tr>
<tr>
<td>+</td>
<td></td>
<td>device_id</td>
<td>int8</td>
</tr>
<tr>
<td>+</td>
<td></td>
<td>state</td>
<td>varchar</td>
</tr>
<tr>
<td>+</td>
<td></td>
<td>model</td>
<td>varchar</td>
</tr>
<tr>
<td>+</td>
<td></td>
<td>firmware_version</td>
<td>varchar</td>
</tr>
<tr>
<td>+</td>
<td></td>
<td>temperature</td>
<td>numeric</td>
</tr>
<tr>
<td>+</td>
<td></td>
<td>power_drain</td>
<td>numeric</td>
</tr>
<tr>
<td>Column</td>
<td>Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>app_version</td>
<td>v50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hw_model</td>
<td>em_i8180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hw_make</td>
<td>Emdoor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Support: 0.8226
Ratio Out/In: 472.92
Records: 849

Correlated attributes

Key metric

![Histogram of battery drain](image)
MacroBase Query Architecture

- Extract domain-specific signals
- Identify data in tails
- Find disproportionately correlated attributes

- Outliers: {iPhone6, Canada}, {iPhone6, USA}, {iPhone5, Canada}
- Inliers: {iPhone6, USA}, {iPhone6, USA}, {iPhone5, USA}
MacroBase Summary

End-to-end system to prioritize user attention

• No ML expertise needed: MacroBase uses general models and tunes them automatically
• No separate step for production use
• Co-design from algorithms to HW

Early users: automotive, cloud, mobile apps, manufacturing

Open source: github.com/stanford-futuredata/macrobase
The DAWN Stack

- **Data Acquisition**
 - Snorkel
 - DeepDive

- **Feature Engineering**
 - MacroBase (Streaming Data)
 - Data Fusion

- **Model Training**
 - ModelSnap
 - AutoRec, SimDex (Recommendation)
 - Mulligan (SQL+graph+ML)

- **Productionizing**
 - ModelQA
 - NoScope (Video)

Hardware
- CPU
- GPU
- FPGA
- Cluster
- Mobile

New Hardware
- FuzzyBit
- Plasticine CGRA

End-to-End Compilers
- Weld, Delite
Weld: Rethinking the Interface to Data Analytics Libraries

Standard approach: users combine libraries using function calls that pass data via memory

Problem: for data-intensive apps, data movement cost dominates on modern hardware!

5-30x slowdowns in NumPy, Spark, TensorFlow, …
Weld’s Approach

Diverse Analytics Tasks

- SQL
- machine learning
- graph algorithms

Common Runtime

Weld IR

Diverse Hardware Platforms

- CPUs
- GPUs
- FPGAs
...
Results: Existing Frameworks

Integration effort: 500 lines glue, 30 lines/operator
Results: Cross-Library Optimization

Pandas + NumPy

- Current
- Weld, no CLO
- Weld, CLO
- Weld, 12 core

Spark SQL UDF

- Scala UDF
- Weld

CLO = cross-library optimization

Open source: weld.stanford.edu
The DAWN Stack

Data Acquisition
- Snorkel
- DeepDive

Feature Engineering
- MacroBase (Streaming Data)
- Data Fusion

Model Training
- NoScope (Video)
- ModelSnap
- AutoRec, SimDex (Recommendation)
- Mulligan (SQL+graph+ML)

Productionizing
- ModelQA

hardware
- CPU
- GPU
- FPGA
- Cluster
- Mobile

New Hardware: FuzzyBit, Plasticine CGRA

End-to-End Compilers: Weld, Delite
NoScope: Fast CNN-Based Video Queries

Opportunity: CNNs allow more accurate queries on visual data than ever.

Challenge: processing 1 video in real time requires a $1000 GPU.

Result: same accuracy but 100-3000x faster through:
 • Scene-specific distillation
 • Temporal + spatial locality

bit.ly/NoScopeArxiv
The DAWN Stack

Data Acquisition
- Snorkel
- DeepDive

Feature Engineering
- MacroBase (Streaming Data)
- Data Fusion

Model Training
- ModelSnap
- AutoRec, SimDex (Recommendation)
- Mulligan (SQL+graph+ML)

Productionizing
- ModelQA
- NoScope (Video)

Hardware
- End-to-End Compilers: Weld, Delite
- New Hardware: FuzzyBit, Plasticine CGRA

Interfaces
- CPU
- GPU
- FPGA
- Cluster
- Mobile

Algorithms
- Systems
- Hardware

Software
- Interfaces
- Algorithms
- Systems
Training data is key enabler, barrier to entry

How can we leverage data that’s expensive to label at scale?
Snorkel’s Approach: Weak Supervision

1) User writes *labeling functions*: short programs that may not always give right label
 - E.g. regex to search in text

2) Snorkel simultaneously learns *noise* in LFs and a *noise-aware* target model (e.g. LSTM)

<table>
<thead>
<tr>
<th>System</th>
<th>NCBI Disease (F1)</th>
<th>CDR Disease (F1)</th>
<th>CDR Chem. (F1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaggerOne (Dogan, 2012)*</td>
<td>81.5</td>
<td>79.6</td>
<td>88.4</td>
</tr>
<tr>
<td>Snorkel: Logistic Regression</td>
<td>79.1</td>
<td>79.6</td>
<td>88.4</td>
</tr>
<tr>
<td>Snorkel: LSTM + Embeddings</td>
<td>79.2</td>
<td>80.4</td>
<td>88.2</td>
</tr>
</tbody>
</table>

github.com/HazyResearch/snorkel
DAWN: machine learning for everyone via novel techniques and interfaces that span hardware, systems, and algorithms

Find out more at dawn.cs.stanford.edu

Peter Bailis Chris Ré Kunle Olukotun Matei Zaharia